Loading...

Min Kyu Kim, PhD, MS

Title(s)Assistant Professor, Cellular Molecular Pharmacology
SchoolSchool of Medicine
Address1700 4th Street
San Francisco CA 94158
Phone415-476-3068
ORCID ORCID Icon0000-0002-1139-2279 Additional info
vCardDownload vCard

    Collapse Biography 
    Collapse Education and Training
    KAISTB.Sc.1992Biology
    Seoul National UniversityM.S.1995Molecular Biology
    Seoul National UniversityPh.D.2000Biological Sciences
    Seoul National University PostDoc2001Biological Sciences
    Harvard Medical SchoolPostDoc2009Biological Chemistry and Molecular Pharmacology
    Collapse Awards and Honors
    KAIST1992Cum laude
    Korea Research Foundation1995  - 1996Pre-doctoral Fellowship for Future Researchers
    Harvard Medical School2004BCMP Discovery of the Year
    The Medical Foundation2005  - 2007Charles A. King Trust Postdoctoral Fellowship
    Helen Diller Family Comprehensive Cancer Center, UCSF2016  - 2017Martha and Bruce Atwater Breast Cancer Research Award
    UCSF2016  - 2017Program for Breakthrough Biomedical Research (PBBR) Award
    Helen Diller Family Comprehensive Cancer Center, UCSF2018  - 2019Give Breast Cancer The Boot Award
    UCSF Wolfe Meningioma Program2018  - 2019Wolfe Meningioma Program Project Award
    Helen Diller Family Comprehensive Cancer Center, UCSF2018  - 2020Martha and Bruce Atwater Breast Cancer Research Award

    Collapse Overview 
    Collapse Overview
    Physical and Genetic Interaction Networks Governing Pathway Deregulation in Cancer

    A central question in cancer genetics is how variations in DNA sequence (genotypic heterogeneity), dispersed across a multitude of genes and proteins, elicit similar phenotypes and patient outcomes. However, different genetic drivers of a trait often aggregate, rather than randomly located, in the molecular networks such as those that underlie protein complexes, signaling pathways, or chromatin architecture, emphasizing the importance of network-based approaches in cancer research. This research investigates protein-protein and genetic interactions, using the large-scale proteomics and genomics, to dissect functions of protein complexes and biological pathways during cellular proliferation and/or tumorigenesis as they are formed and turned on. Stepping closer to translational research, this study will allow us to identify a novel key regulator(s) of significant clinical relevance for multiple cellular proliferation and oncogenic pathways, for which new and effective therapeutic strategies could be developed.



    Transcription Termination and RNA Processing

    Proteins of different activities are often derived from a single gene by alternative polyadenylation and termination, and many bacterial operons are controlled by attenuation, which manifest the importance of transcription termination in gene regulation. However, the mechanisms that terminate transcription are less well understood. The goal of this research is to define the functional interactions between various protein factors and RNA polymerases to understand the regulation of transcription termination and its fundamental roles in gene expression and RNA 3’-end processing. Ultimately, this study will be able to lead us to manipulate termination, so that we can develop potential therapies for genetic disorders caused by aberrant termination and RNA processing.

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020 Apr 30. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Huettenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. PMID: 32353859.
      View in: PubMed   Mentions: 27     Fields:    
    2. Mapping the protein-protein and genetic interactions of cancer to guide precision medicine. Curr Opin Genet Dev. 2019 02; 54:110-117. Bouhaddou M, Eckhardt M, Chi Naing ZZ, Kim M, Ideker T, Krogan NJ. PMID: 31288129.
      View in: PubMed   Mentions:    Fields:    Translation:HumansCells
    3. Exosome Cofactors Connect Transcription Termination to RNA Processing by Guiding Terminated Transcripts to the Appropriate Exonuclease within the Nuclear Exosome. J Biol Chem. 2016 Jun 17; 291(25):13229-42. Kim K, Heo DH, Kim I, Suh JY, Kim M. PMID: 27076633.
      View in: PubMed   Mentions: 5     Fields:    Translation:AnimalsCells
    4. Unraveling the mechanistic features of RNA polymerase II termination by the 5'-3' exoribonuclease Rat1. Nucleic Acids Res. 2015 Mar 11; 43(5):2625-37. Park J, Kang M, Kim M. PMID: 25722373.
      View in: PubMed   Mentions: 9     Fields:    Translation:Cells
    5. The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. J Biol Chem. 2013 Dec 20; 288(51):36676-90. Heo DH, Yoo I, Kong J, Lidschreiber M, Mayer A, Choi BY, Hahn Y, Cramer P, Buratowski S, Kim M. PMID: 24196955.
      View in: PubMed   Mentions: 6     Fields:    Translation:AnimalsCells
    6. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat Struct Mol Biol. 2010 Oct; 17(10):1195-201. Lunde BM, Reichow SL, Kim M, Suh H, Leeper TC, Yang F, Mutschler H, Buratowski S, Meinhart A, Varani G. PMID: 20818393.
      View in: PubMed   Mentions: 59     Fields:    Translation:HumansCells
    7. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J Biol Chem. 2009 Sep 25; 284(39):26421-6. Kim M, Suh H, Cho EJ, Buratowski S. PMID: 19679665.
      View in: PubMed   Mentions: 68     Fields:    Translation:AnimalsCells
    8. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol. 2008 Aug; 15(8):795-804. Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A. PMID: 18660819.
      View in: PubMed   Mentions: 133     Fields:    Translation:AnimalsCells
    9. Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. Mol Cell. 2008 Feb 15; 29(3):313-23. Vasiljeva L, Kim M, Terzi N, Soares LM, Buratowski S. PMID: 18280237.
      View in: PubMed   Mentions: 71     Fields:    Translation:AnimalsCells
    10. Dynamics of replication-independent histone turnover in budding yeast. Science. 2007 Mar 09; 315(5817):1405-8. Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ. PMID: 17347438.
      View in: PubMed   Mentions: 286     Fields:    Translation:AnimalsCells
    11. Distinct pathways for snoRNA and mRNA termination. Mol Cell. 2006 Dec 08; 24(5):723-734. Kim M, Vasiljeva L, Rando OJ, Zhelkovsky A, Moore C, Buratowski S. PMID: 17157255.
      View in: PubMed   Mentions: 98     Fields:    Translation:AnimalsCells
    12. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 2005 Oct; 3(10):e328. Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, Rando OJ. PMID: 16122352.
      View in: PubMed   Mentions: 242     Fields:    Translation:AnimalsCells
    13. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature. 2004 Nov 25; 432(7016):517-22. Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, Buratowski S. PMID: 15565157.
      View in: PubMed   Mentions: 203     Fields:    Translation:AnimalsCells
    14. Transitions in RNA polymerase II elongation complexes at the 3' ends of genes. EMBO J. 2004 Jan 28; 23(2):354-64. Kim M, Ahn SH, Krogan NJ, Greenblatt JF, Buratowski S. PMID: 14739930.
      View in: PubMed   Mentions: 157     Fields:    Translation:Cells
    15. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. Mol Cell. 2004 Jan 16; 13(1):67-76. Ahn SH, Kim M, Buratowski S. PMID: 14731395.
      View in: PubMed   Mentions: 213     Fields:    Translation:AnimalsCells
    16. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3'-ends. J Biol Chem. 2003 Aug 29; 278(35):33000-10. Nedea E, He X, Kim M, Pootoolal J, Zhong G, Canadien V, Hughes T, Buratowski S, Moore CL, Greenblatt J. PMID: 12819204.
      View in: PubMed   Mentions: 89     Fields:    Translation:AnimalsCells
    17. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol. 2003 Jun; 23(12):4207-18. Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J. PMID: 12773564.
      View in: PubMed   Mentions: 281     Fields:    Translation:AnimalsCells
    18. Post-transcriptional regulation of ura4+ gene expression by glucose in Schizosaccharomyces pombe. Mol Cells. 2002 Dec 31; 14(3):437-43. Kim MJ, Kim M, Park SD. PMID: 12521309.
      View in: PubMed   Mentions: 1     Fields:    Translation:AnimalsCells
    19. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol. 2002 Oct; 22(20):6979-92. Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, Emili A, Shilatifard A, Buratowski S, Greenblatt JF. PMID: 12242279.
      View in: PubMed   Mentions: 232     Fields:    Translation:AnimalsCells
    20. Fibrillarin binds to a 3' cis-regulatory element in pre-mRNA of uvi15+ in fission yeast. Biochem Biophys Res Commun. 2002 Jun 28; 294(5):1184-90. Jang YK, Kim M, Dai Park S. PMID: 12074602.
      View in: PubMed   Mentions:    Fields:    Translation:AnimalsCells
    21. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 2001 Dec 15; 15(24):3319-29. Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S. PMID: 11751637.
      View in: PubMed   Mentions: 178     Fields:    Translation:AnimalsCells
    22. The stress-activated MAP kinase Sty1/Spc1 and a 3'-regulatory element mediate UV-induced expression of the uvi15(+) gene at the post-transcriptional level. Nucleic Acids Res. 2000 Sep 01; 28(17):3392-402. Kim M, Lee W, Park J, Kim JB, Jang YK, Seong RH, Choe SY, Park SD. PMID: 10954610.
      View in: PubMed   Mentions: 3     Fields:    Translation:AnimalsCells
    23. Identification and expression of uvi31+, a UV-inducible gene from Schizosaccharomyces pombe. Environ Mol Mutagen. 1997; 30(1):72-81. Kim SH, Kim M, Lee JK, Kim MJ, Jin YH, Seong RH, Hong SH, Joe CO, Park SD. PMID: 9258332.
      View in: PubMed   Mentions: 9     Fields:    Translation:AnimalsCells
    24. Characterization of uvi15+, a stress-inducible gene from Schizosaccharomyces pombe. Mol Gen Genet. 1995 Mar 20; 246(6):663-70. Lee JK, Kim M, Choe J, Seong RH, Hong SH, Park SD. PMID: 7898433.
      View in: PubMed   Mentions: 6     Fields:    Translation:AnimalsCells