Min Kyu Kim, PhD, MS

Title(s)Assistant Professor, Cellular Molecular Pharmacology
SchoolSchool of Medicine
vCardDownload vCard

    Collapse Biography 
    Collapse Education and Training
    Seoul National UniversityM.S.1995Molecular Biology
    Seoul National UniversityPh.D.2000Biological Sciences
    Seoul National University PostDoc2001Biological Sciences
    Harvard Medical SchoolPostDoc2009Biological Chemistry and Molecular Pharmacology
    Collapse Awards and Honors
    KAIST1992Cum laude
    Korea Research Foundation1995  - 1996Pre-doctoral Fellowship for Future Researchers
    Harvard Medical School2004BCMP Discovery of the Year
    The Medical Foundation2005  - 2007Charles A. King Trust Postdoctoral Fellowship
    Helen Diller Family Comprehensive Cancer Center, UCSF2016  - 2017Martha and Bruce Atwater Breast Cancer Research Award
    UCSF2016  - 2017Program for Breakthrough Biomedical Research (PBBR) Award
    Helen Diller Family Comprehensive Cancer Center, UCSF2018  - 2019Give Breast Cancer The Boot Award
    UCSF Wolfe Meningioma Program2018  - 2019Wolfe Meningioma Program Project Award
    Helen Diller Family Comprehensive Cancer Center, UCSF2018  - 2020Martha and Bruce Atwater Breast Cancer Research Award

    Collapse Overview 
    Collapse Overview
    Physical and Genetic Interaction Networks Governing Pathway Deregulation in Cancer

    A central question in cancer genetics is how variations in DNA sequence (genotypic heterogeneity), dispersed across a multitude of genes and proteins, elicit similar phenotypes and patient outcomes. However, different genetic drivers of a trait often aggregate, rather than randomly located, in the molecular networks such as those that underlie protein complexes, signaling pathways, or chromatin architecture, emphasizing the importance of network-based approaches in cancer research. This research investigates protein-protein and genetic interactions, using the large-scale proteomics and genomics, to dissect functions of protein complexes and biological pathways during cellular proliferation and/or tumorigenesis as they are formed and turned on. Stepping closer to translational research, this study will allow us to identify a novel key regulator(s) of significant clinical relevance for multiple cellular proliferation and oncogenic pathways, for which new and effective therapeutic strategies could be developed.

    Transcription Termination and RNA Processing

    Proteins of different activities are often derived from a single gene by alternative polyadenylation and termination, and many bacterial operons are controlled by attenuation, which manifest the importance of transcription termination in gene regulation. However, the mechanisms that terminate transcription are less well understood. The goal of this research is to define the functional interactions between various protein factors and RNA polymerases to understand the regulation of transcription termination and its fundamental roles in gene expression and RNA 3’-end processing. Ultimately, this study will be able to lead us to manipulate termination, so that we can develop potential therapies for genetic disorders caused by aberrant termination and RNA processing.

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help.
    List All   |   Timeline
    1. Kim K, Heo DH, Kim I, Suh JY, Kim M. Exosome Cofactors Connect Transcription Termination to RNA Processing by Guiding Terminated Transcripts to the Appropriate Exonuclease within the Nuclear Exosome. J Biol Chem. 2016 Jun 17; 291(25):13229-42. PMID: 27076633; PMCID: PMC4933236 [Available on 06/17/17].
    2. Park J, Kang M, Kim M. Unraveling the mechanistic features of RNA polymerase II termination by the 5'-3' exoribonuclease Rat1. Nucleic Acids Res. 2015 Mar 11; 43(5):2625-37. PMID: 25722373; PMCID: PMC4357727.
    3. Heo DH, Yoo I, Kong J, Lidschreiber M, Mayer A, Choi BY, Hahn Y, Cramer P, Buratowski S, Kim M. The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. J Biol Chem. 2013 Dec 20; 288(51):36676-90. PMID: 24196955; PMCID: PMC3868778.
    4. Lunde BM, Reichow SL, Kim M, Suh H, Leeper TC, Yang F, Mutschler H, Buratowski S, Meinhart A, Varani G. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat Struct Mol Biol. 2010 Oct; 17(10):1195-201. PMID: 20818393; PMCID: PMC2950884.
    5. Kim M, Suh H, Cho EJ, Buratowski S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J Biol Chem. 2009 Sep 25; 284(39):26421-6. PMID: 19679665; PMCID: PMC2785330.
    6. Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol. 2008 Aug; 15(8):795-804. PMID: 18660819; PMCID: PMC2597375.
    7. Vasiljeva L, Kim M, Terzi N, Soares LM, Buratowski S. Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. Mol Cell. 2008 Feb 15; 29(3):313-23. PMID: 18280237.
      View in: PubMed
    8. Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ. Dynamics of replication-independent histone turnover in budding yeast. Science. 2007 Mar 09; 315(5817):1405-8. PMID: 17347438.
      View in: PubMed
    9. Kim M, Vasiljeva L, Rando OJ, Zhelkovsky A, Moore C, Buratowski S. Distinct pathways for snoRNA and mRNA termination. Mol Cell. 2006 Dec 08; 24(5):723-734. PMID: 17157255.
      View in: PubMed
    10. Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, Rando OJ. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol. 2005 Oct; 3(10):e328. PMID: 16122352; PMCID: PMC1195719.
    11. Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, Buratowski S. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature. 2004 Nov 25; 432(7016):517-22. PMID: 15565157.
      View in: PubMed
    12. Kim M, Ahn SH, Krogan NJ, Greenblatt JF, Buratowski S. Transitions in RNA polymerase II elongation complexes at the 3' ends of genes. EMBO J. 2004 Jan 28; 23(2):354-64. PMID: 14739930; PMCID: PMC1271760.
    13. Ahn SH, Kim M, Buratowski S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. Mol Cell. 2004 Jan 16; 13(1):67-76. PMID: 14731395.
      View in: PubMed
    14. Nedea E, He X, Kim M, Pootoolal J, Zhong G, Canadien V, Hughes T, Buratowski S, Moore CL, Greenblatt J. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3'-ends. J Biol Chem. 2003 Aug 29; 278(35):33000-10. PMID: 12819204.
      View in: PubMed
    15. Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol. 2003 Jun; 23(12):4207-18. PMID: 12773564; PMCID: PMC427527.
    16. Kim MJ, Kim M, Park SD. Post-transcriptional regulation of ura4+ gene expression by glucose in Schizosaccharomyces pombe. Mol Cells. 2002 Dec 31; 14(3):437-43. PMID: 12521309.
      View in: PubMed
    17. Krogan NJ, Kim M, Ahn SH, Zhong G, Kobor MS, Cagney G, Emili A, Shilatifard A, Buratowski S, Greenblatt JF. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol. 2002 Oct; 22(20):6979-92. PMID: 12242279; PMCID: PMC139818.
    18. Jang YK, Kim M, Dai Park S. Fibrillarin binds to a 3' cis-regulatory element in pre-mRNA of uvi15+ in fission yeast. Biochem Biophys Res Commun. 2002 Jun 28; 294(5):1184-90. PMID: 12074602.
      View in: PubMed
    19. Cho EJ, Kobor MS, Kim M, Greenblatt J, Buratowski S. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 2001 Dec 15; 15(24):3319-29. PMID: 11751637; PMCID: PMC312848.
    20. Kim M, Lee W, Park J, Kim JB, Jang YK, Seong RH, Choe SY, Park SD. The stress-activated MAP kinase Sty1/Spc1 and a 3'-regulatory element mediate UV-induced expression of the uvi15(+) gene at the post-transcriptional level. Nucleic Acids Res. 2000 Sep 01; 28(17):3392-402. PMID: 10954610; PMCID: PMC110690.
    21. Kim SH, Kim M, Lee JK, Kim MJ, Jin YH, Seong RH, Hong SH, Joe CO, Park SD. Identification and expression of uvi31+, a UV-inducible gene from Schizosaccharomyces pombe. Environ Mol Mutagen. 1997; 30(1):72-81. PMID: 9258332.
      View in: PubMed
    22. Lee JK, Kim M, Choe J, Seong RH, Hong SH, Park SD. Characterization of uvi15+, a stress-inducible gene from Schizosaccharomyces pombe. Mol Gen Genet. 1995 Mar 20; 246(6):663-70. PMID: 7898433.
      View in: PubMed