Loading...

Rong Wang, PhD

Title(s)Professor, Surgery
SchoolSchool of Medicine
Address513 Parnassus Ave, HSW
San Francisco CA 94143
Phone415-476-6855
vCardDownload vCard

    Collapse Biography 
    Collapse Education and Training
    Sichuan UniversityB.S.1984Biology
    Graduate School of Chinese Science and Technology University, Institute of Genetics, Academia SinicaM.S. Candidate1988Mammalian Genetics
    University of North Carolina, Chapel HillPh.D.1993Biology (Angiogenesis)
    University of California, San FranciscoPostdoctoral Fellowship1999Cancer Biology
    University of California, San FranciscoCoro-UCSF Collaborative2008Faculty Leadership Training
    University of California, San Francisco, CA2019Diversity, Equity, and Inclusion Champion Training

    Collapse Overview 
    Collapse Overview
    MOLECULAR PROGRAMMING OF THE VASCULATURE IN DEVELOPMENT AND DISEASE
    Proper formation and function of the vasculature are crucial for health and survival, as the vasculature supplies all cells in the body. A dysfunctional vasculature causes myriad diseases, including stroke, arterial occlusive diseases, and vascular anomalies. Our long-term goal is to identify novel drug targets and inform rational therapeutic designs to treat vascular diseases. Our strategy is to understand genes crucial for angiogenesis (new vessel formation) in the normal and diseased states, concentrating on the Notch, ephrin-B2, and TGF-beta pathways. We employ cutting-edge mouse genetics to delete or express genes in a cell lineage-specific and temporally controllable fashion in vascular cells. We combine these molecular approaches with mouse models of diseases as well as live 5D two-photon imaging (3D + blood flow over time) to uncover both the molecular mechanisms and hemodynamic signals in development and disease progression. These preclinical animal studies are coupled with patient sample validations. Our lab members come from diverse fields, including biology, bioengineering, and medicine, creating a collaborative and exciting environment. We strive to advance multiple projects across disciplines.

    PROJECTS
    Molecular programming of blood vessels: Building on our study of the developing dorsal aorta and cardinal vein, the first major artery-vein (AV) pair to form in the body, our lab aims to identify molecular regulators that program arteries and veins in vital organs during development and aging. We examine the interplay between genetic AV programming and flow-induced patterning. Understanding AV programming in normal angiogenesis provides important insights into how the genetic pathways can be hijacked in various disease states.

    Stroke: We study two types of stroke, ischemic stroke and hemorrhagic stroke. Ischemic stroke occurs when arteries supplying the brain are blocked. Using a surgical model of ischemic stroke, we aim to identify technologies enabling better recover following arterial blockade. Hemorrhagic stroke, on the other hand, occurs when diseased blood vessels rupture. Brain arteriovenous malformations (AVMs), which are direct connections from arteries to veins, are one of the major causes of hemorrhagic stroke. We investigate AV programming in both AVM progression and regression.

    Arteriovenous malformations: AVMs can occur anywhere in the body and comprise a category of hard to treat vascular anomalies. Most AVMs are sporadic, thus limiting the understanding of their etiology. In contrast, hereditary AVMs, such as those found in hereditary hemorrhagic telangiectasia (HHT) patients, offer an excellent opportunity to study how AVMs form. HHTs are caused by mutations in genes of the TGF-beta superfamily. We are interested in the molecular mechanisms underlying HHT-mediated AVMs formation.

    Arterial occlusive diseases: Arterial occlusive diseases occur when the arteries in the body are blocked, causing insufficient blood flow to the tissues. Blockage of arteries in the brain causes stroke, in the heart causes myocardial infarction, and in the extremities causes peripheral arterial disease. Arteriogenesis, a process by which small dormant arteries around the blockage enlarge to form collateral circulation, holds promise to restore blood flow and rescue affected tissues. We investigate pro-arteriogenic molecular regulators to uncover potential therapeutic strategies to enhance the body’s natural defense against arterial occlusive disease.

    Collapse Research 
    Collapse Research Activities and Funding
    Molecular Pathogenesis of Hereditary Hemorrhagic Telangiectasia
    NIH/NINDS R01NS113429Feb 1, 2020 - Jan 31, 2025
    Role: Principal Investigator
    Molecular Pathogenesis of Hereditary Hemorrhagic Telangiectasia
    NINDS R01NS113429Feb 1, 2020 - Jan 31, 2025
    Role: Principal Investigator
    Identifying Molecular Regulators of Hereditary Hemorrhagic Telangiectasia In a Novel Mouse Model
    American Heart Association 19TPA34910134Jul 1, 2019 - Jun 30, 2022
    Role: Principal Investigator
    Molecular Pathogenesis and Therapy for Critical Lim Ischemia
    Tobacco Related Disease Research Program High Impact Research Project AwardJul 1, 2018 - Jun 30, 2021
    Role: Principal Investigator
    RBPJ and EphrinB2 as Molecular Targets to Treat Brain Arteriovenous Malformation in Notch4-Induced Mouse Models
    Department of the Army W81XWH-15-PRMRP-IIRASep 30, 2016 - Sep 30, 2020
    Role: Principal Investigator
    Molecular Pathogenesis of Brain Arteriovenous Malformation
    NIH/NINDS R01NS067420Aug 1, 2010 - Sep 29, 2013
    Role: Principal Investigator
    Notch Signaling in Arterial-Venous Specification
    NIH/NHLBI R01HL075033Apr 1, 2005 - Mar 31, 2010
    Role: Principal Investigator

    Collapse ORNG Applications 
    Collapse Featured Publications
    Collapse Websites

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Site-specific antibody fragment conjugates for targeted imaging. Methods Enzymol. 2020; 638:295-320. Maloney R, Buuh ZY, Zhao Y, Wang RE. PMID: 32416919.
      View in: PubMed   Mentions:    Fields:    
    2. A tumor-targeted immune checkpoint blocker. Proc Natl Acad Sci U S A. 2019 08 06; 116(32):15889-15894. Zhang Y, Fang C, Wang RE, Wang Y, Guo H, Guo C, Zhao L, Li S, Li X, Schultz PG, Cao YJ, Wang F. PMID: 31332018.
      View in: PubMed   Mentions: 1     Fields:    Translation:HumansAnimalsCells
    3. Endothelial notch signaling is essential to prevent hepatic vascular malformations in mice. Hepatology. 2016 10; 64(4):1302-1316. Cuervo H, Nielsen CM, Simonetto DA, Ferrell L, Shah VH, Wang RA. PMID: 27362333.
      View in: PubMed   Mentions: 10     Fields:    Translation:AnimalsCells
    4. Mouse Models of Cerebral Arteriovenous Malformation. Stroke. 2016 Jan; 47(1):293-300. Nielsen CM, Huang L, Murphy PA, Lawton MT, Wang RA. PMID: 26351360.
      View in: PubMed   Mentions: 4     Fields:    Translation:HumansAnimals
    5. Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels. Proc Natl Acad Sci U S A. 2014 Dec 16; 111(50):18007-12. Murphy PA, Kim TN, Huang L, Nielsen CM, Lawton MT, Adams RH, Schaffer CB, Wang RA. PMID: 25468970.
      View in: PubMed   Mentions: 20     Fields:    Translation:AnimalsCells
    6. Endothelial ephrin-B2 is essential for arterial vasodilation in mice. Microcirculation. 2014 Oct; 21(7):578-86. Lin Y, Jiang W, Ng J, Jina A, Wang RA. PMID: 24673722.
      View in: PubMed   Mentions: 3     Fields:    Translation:AnimalsCells
    7. Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice. Development. 2014 Oct; 141(19):3782-92. Nielsen CM, Cuervo H, Ding VW, Kong Y, Huang EJ, Wang RA. PMID: 25209249.
      View in: PubMed   Mentions: 11     Fields:    Translation:AnimalsCells
    8. Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals. Development. 2014 Mar; 141(5):1120-8. Lindskog H, Kim YH, Jelin EB, Kong Y, Guevara-Gallardo S, Kim TN, Wang RA. PMID: 24550118.
      View in: PubMed   Mentions: 22     Fields:    Translation:AnimalsCells
    9. Notch4 is required for tumor onset and perfusion. Vasc Cell. 2013 Apr 20; 5(1):7. Costa MJ, Wu X, Cuervo H, Srinivasan R, Bechis SK, Cheang E, Marjanovic O, Gridley T, Cvetic CA, Wang RA. PMID: 23601498.
      View in: PubMed   Mentions:
    10. Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals. PLoS One. 2012; 7(6):e38590. Kim TN, Goodwill PW, Chen Y, Conolly SM, Schaffer CB, Liepmann D, Wang RA. PMID: 22761686.
      View in: PubMed   Mentions: 20     Fields:    Translation:AnimalsCells
    11. Notch4 normalization reduces blood vessel size in arteriovenous malformations. Sci Transl Med. 2012 Jan 18; 4(117):117ra8. Murphy PA, Kim TN, Lu G, Bollen AW, Schaffer CB, Wang RA. PMID: 22261032.
      View in: PubMed   Mentions: 28     Fields:    Translation:AnimalsCells
    12. Constitutively active endothelial Notch4 causes lung arteriovenous shunts in mice. . 2010 Feb; 298(2):L169-77. Miniati D, Jelin EB, Ng J, Wu J, Carlson TR, Wu X, Looney MR, Wang RA. PMID: 19933399.
      View in: PubMed   Mentions:
    13. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science. 2009 Oct 09; 326(5950):294-8. Herbert SP, Huisken J, Kim TN, Feldman ME, Houseman BT, Wang RA, Shokat KM, Stainier DY. PMID: 19815777.
      View in: PubMed   Mentions: 118     Fields:    Translation:AnimalsCells
    14. Endothelial Notch signaling is upregulated in human brain arteriovenous malformations and a mouse model of the disease. Lab Invest. 2009 Sep; 89(9):971-82. Murphy PA, Lu G, Shiah S, Bollen AW, Wang RA. PMID: 19546852.
      View in: PubMed   Mentions: 24     Fields:    Translation:HumansAnimalsCells
    15. Cellular and molecular mechanism regulating blood flow recovery in acute versus gradual femoral artery occlusion are distinct in the mouse. J Vasc Surg. 2008 Dec; 48(6):1546-58. Yang Y, Tang G, Yan J, Park B, Hoffman A, Tie G, Wang R, Messina LM. PMID: 19118738.
      View in: PubMed   Mentions: 18     Fields:    Translation:Animals
    16. Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development. 2008 Nov; 135(22):3755-64. Kim YH, Hu H, Guevara-Gallardo S, Lam MT, Fong SY, Wang RA. PMID: 18952909.
      View in: PubMed   Mentions: 49     Fields:    Translation:AnimalsCells
    17. Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice. Proc Natl Acad Sci U S A. 2008 Aug 05; 105(31):10901-6. Murphy PA, Lam MT, Wu X, Kim TN, Vartanian SM, Bollen AW, Carlson TR, Wang RA. PMID: 18667694.
      View in: PubMed   Mentions: 53     Fields:    Translation:AnimalsCells
    18. Placental rescue reveals a sole requirement for c-Myc in embryonic erythroblast survival and hematopoietic stem cell function. Development. 2008 Aug; 135(14):2455-65. Dubois NC, Adolphe C, Ehninger A, Wang RA, Robertson EJ, Trumpp A. PMID: 18550708.
      View in: PubMed   Mentions: 38     Fields:    Translation:AnimalsCells
    19. c-myc in the hematopoietic lineage is crucial for its angiogenic function in the mouse embryo. Development. 2008 Aug; 135(14):2467-77. He C, Hu H, Braren R, Fong SY, Trumpp A, Carlson TR, Wang RA. PMID: 18550710.
      View in: PubMed   Mentions: 29     Fields:    Translation:AnimalsCells
    20. Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development. 2008 Jun; 135(12):2193-202. Carlson TR, Hu H, Braren R, Kim YH, Wang RA. PMID: 18480158.
      View in: PubMed   Mentions: 55     Fields:    Translation:AnimalsCells
    21. Distinct pathways of genomic progression to benign and malignant tumors of the liver. Proc Natl Acad Sci U S A. 2007 Sep 11; 104(37):14771-6. Tward AD, Jones KD, Yant S, Cheung ST, Fan ST, Chen X, Kay MA, Wang R, Bishop JM. PMID: 17785413.
      View in: PubMed   Mentions: 87     Fields:    Translation:HumansAnimals
    22. Endothelial FAK is essential for vascular network stability, cell survival, and lamellipodial formation. J Cell Biol. 2006 Jan 02; 172(1):151-62. Braren R, Hu H, Kim YH, Beggs HE, Reichardt LF, Wang R. PMID: 16391003.
      View in: PubMed   Mentions: 109     Fields:    Translation:AnimalsCells
    23. Optimization of adenovirus-mediated endothelial nitric oxide synthase delivery in rat hindlimb ischemia. Gene Ther. 2005 Nov; 12(22):1640-50. Yan J, Tang GL, Wang R, Messina LM. PMID: 16107865.
      View in: PubMed   Mentions: 4     Fields:    Translation:AnimalsCells
    24. Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. J Neurosci. 2005 Oct 26; 25(43):9940-8. Proctor JM, Zang K, Wang D, Wang R, Reichardt LF. PMID: 16251442.
      View in: PubMed   Mentions: 74     Fields:    Translation:AnimalsCells
    25. Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci U S A. 2005 Jul 12; 102(28):9884-9. Carlson TR, Yan Y, Wu X, Lam MT, Tang GL, Beverly LJ, Messina LM, Capobianco AJ, Werb Z, Wang R. PMID: 15994223.
      View in: PubMed   Mentions: 72     Fields:    Translation:AnimalsCells
    26. VEGF is crucial for the hepatic vascular development required for lipoprotein uptake. Development. 2005 Jul; 132(14):3293-303. Carpenter B, Lin Y, Stoll S, Raffai RL, McCuskey R, Wang R. PMID: 15944181.
      View in: PubMed   Mentions: 26     Fields:    Translation:AnimalsCells
    27. The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. J Vasc Surg. 2005 Feb; 41(2):312-20. Tang GL, Chang DS, Sarkar R, Wang R, Messina LM. PMID: 15768015.
      View in: PubMed   Mentions: 32     Fields:    Translation:Animals
    28. Genomic progression in mouse models for liver tumors. Cold Spring Harb Symp Quant Biol. 2005; 70:217-24. Tward AD, Jones KD, Yant S, Kay MA, Wang R, Bishop JM. PMID: 16869757.
      View in: PubMed   Mentions: 8     Fields:    Translation:HumansAnimalsCells
    29. CCR2-/- knockout mice revascularize normally in response to severe hindlimb ischemia. J Vasc Surg. 2004 Oct; 40(4):786-95. Tang G, Charo DN, Wang R, Charo IF, Messina L. PMID: 15472609.
      View in: PubMed   Mentions: 17     Fields:    Translation:AnimalsCells
    30. Adeno-associated viral vector-mediated gene transfer of VEGF normalizes skeletal muscle oxygen tension and induces arteriogenesis in ischemic rat hindlimb. Mol Ther. 2003 Jan; 7(1):44-51. Chang DS, Su H, Tang GL, Brevetti LS, Sarkar R, Wang R, Kan YW, Messina LM. PMID: 12573617.
      View in: PubMed   Mentions: 8     Fields:    Translation:AnimalsCells
    31. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol. 2001 May 28; 153(5):1023-34. Wang R, Ferrell LD, Faouzi S, Maher JJ, Bishop JM. PMID: 11381087.
      View in: PubMed   Mentions: 99     Fields:    Translation:HumansAnimalsCells
    32. Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. Proc Natl Acad Sci U S A. 1996 Aug 06; 93(16):8425-30. Wang R, Kobayashi R, Bishop JM. PMID: 8710887.
      View in: PubMed   Mentions: 40     Fields:    Translation:AnimalsCells
    33. Developmental analysis of bone tumors in polyomavirus transgenic mice. Lab Invest. 1994 Jan; 70(1):86-94. Wang R, Siegal GP, Scott DL, Bautch VL. PMID: 8302023.
      View in: PubMed   Mentions:    Fields:    Translation:AnimalsCells
    34. Embryonic stem cell-derived cystic embryoid bodies form vascular channels: an in vitro model of blood vessel development. Development. 1992 Feb; 114(2):303-16. Wang R, Clark R, Bautch VL. PMID: 1591994.
      View in: PubMed   Mentions: 42     Fields:    Translation:AnimalsCells
    35. The polyomavirus early region gene in transgenic mice causes vascular and bone tumors. J Virol. 1991 Oct; 65(10):5174-83. Wang R, Bautch VL. PMID: 1654437.
      View in: PubMed   Mentions: 5     Fields:    Translation:AnimalsCells
    36. Isolation and characterization of an established endothelial cell line from transgenic mouse hemangiomas. Exp Cell Res. 1991 Oct; 196(2):302-13. Dubois NA, Kolpack LC, Wang R, Azizkhan RG, Bautch VL. PMID: 1893941.
      View in: PubMed   Mentions: 12     Fields:    Translation:AnimalsCells
    Rong's Networks
    Concepts (239)
    Derived automatically from this person's publications.
    _
    Co-Authors (20)
    People in Profiles who have published with this person.
    _
    Similar People (59)
    People who share similar concepts with this person.
    _
    Same Department
    Search Department
    _