Sign in to edit your profile (add interests, mentoring, photo, etc.)

    David Toczyski, PhD

    TitleProfessor
    SchoolUCSF School of Medicine
    DepartmentHDF Comprehensive Cancer Ctr
    Address1450 3rd Street
    San Francisco CA 94158
    Phone415-502-1301

       ORNG Applications 
       Websites
       Awarded Grants
       Global Health
       More Info

       Bibliographic 
       Publications
      Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help.
      List All   |   Timeline
      1. Edenberg ER, Downey M, Toczyski D. Polymerase stalling during replication, transcription and translation. Curr Biol. 2014 May 19; 24(10):R445-52.
        View in: PubMed
      2. Edenberg ER, Vashisht AA, Topacio BR, Wohlschlegel JA, Toczyski DP. Hst3 is turned over by a replication stress-responsive SCFCdc4 phospho-degron. Proc Natl Acad Sci U S A. 2014 Apr 22; 111(16):5962-7.
        View in: PubMed
      3. Mark KG, Simonetta M, Maiolica A, Seller CA, Toczyski DP. Ubiquitin Ligase Trapping Identifies an SCF(Saf1) Pathway Targeting Unprocessed Vacuolar/Lysosomal Proteins. Mol Cell. 2014 Jan 9; 53(1):148-61.
        View in: PubMed
      4. Edenberg ER, Vashisht A, Benanti JA, Wohlschlegel J, Toczyski DP. Rad53 downregulates mitotic gene transcription by inhibiting the transcriptional activator ndd1. Mol Cell Biol. 2014 Feb; 34(4):725-38.
        View in: PubMed
      5. Downey M, Knight B, Vashisht AA, Seller CA, Wohlschlegel JA, Shore D, Toczyski DP. Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1. Curr Biol. 2013 Sep 9; 23(17):1638-48.
        View in: PubMed
      6. Landry BD, Doyle JP, Toczyski DP, Benanti JA. F-box protein specificity for g1 cyclins is dictated by subcellular localization. PLoS Genet. 2012; 8(7):e1002851.
        View in: PubMed
      7. Foe IT, Toczyski DP. Ubiquitin ligases: Taming the APC. Nat Chem Biol. 2012 Apr; 8(4):323-4.
        View in: PubMed
      8. Berens TJ, Toczyski DP. Keeping it together in times of stress: checkpoint function at stalled replication forks. Mol Cell. 2012 Mar 9; 45(5):585-6.
        View in: PubMed
      9. Berens TJ, Toczyski DP. Colocalization of Mec1 and Mrc1 is sufficient for Rad53 phosphorylation in vivo. Mol Biol Cell. 2012 Mar; 23(6):1058-67.
        View in: PubMed
      10. Foe IT, Foster SA, Cheung SK, DeLuca SZ, Morgan DO, Toczyski DP. Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism. Curr Biol. 2011 Nov 22; 21(22):1870-7.
        View in: PubMed
      11. Foe I, Toczyski D. Structural biology: a new look for the APC. Nature. 2011 Feb 10; 470(7333):182-3.
        View in: PubMed
      12. Kapitzky L, Beltrao P, Berens TJ, Gassner N, Zhou C, W├╝ster A, Wu J, Babu MM, Elledge SJ, Toczyski D, Lokey RS, Krogan NJ. Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Mol Syst Biol. 2010 Dec 21; 6:451.
        View in: PubMed
      13. Lopez-Mosqueda J, Vidanes GM, Toczyski DP. Cdc5 blocks in vivo Rad53 activity, but not in situ activity (ISA). Cell Cycle. 2010 Nov 1; 9(21):4266-8.
        View in: PubMed
      14. Lopez-Mosqueda J, Maas NL, Jonsson ZO, Defazio-Eli LG, Wohlschlegel J, Toczyski DP. Damage-induced phosphorylation of Sld3 is important to block late origin firing. Nature. 2010 Sep 23; 467(7314):479-83.
        View in: PubMed
      15. Downey M, Edenberg ER, Toczyski DP. Repair scaffolding reaches new heights at blocked replication forks. Mol Cell. 2010 Jul 30; 39(2):162-4.
        View in: PubMed
      16. Vidanes GM, Sweeney FD, Galicia S, Cheung S, Doyle JP, Durocher D, Toczyski DP. CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation. PLoS Biol. 2010 Jan; 8(1):e1000286.
        View in: PubMed
      17. Benanti JA, Matyskiela ME, Morgan DO, Toczyski DP. Functionally distinct isoforms of Cik1 are differentially regulated by APC/C-mediated proteolysis. Mol Cell. 2009 Mar 13; 33(5):581-90.
        View in: PubMed
      18. Benanti JA, Toczyski DP. Cdc20, an activator at last. Mol Cell. 2008 Nov 21; 32(4):460-1.
        View in: PubMed
      19. Bonilla CY, Melo JA, Toczyski DP. Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol Cell. 2008 May 9; 30(3):267-76.
        View in: PubMed
      20. Benanti JA, Cheung SK, Brady MC, Toczyski DP. A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic-gluconeogenic switch. Nat Cell Biol. 2007 Oct; 9(10):1184-91.
        View in: PubMed
      21. Vega LR, Phillips JA, Thornton BR, Benanti JA, Onigbanjo MT, Toczyski DP, Zakian VA. Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase. PLoS Genet. 2007 Jun; 3(6):e105.
        View in: PubMed
      22. Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature. 2007 Apr 12; 446(7137):806-10.
        View in: PubMed
      23. Thornton BR, Toczyski DP. Precise destruction: an emerging picture of the APC. Genes Dev. 2006 Nov 15; 20(22):3069-78.
        View in: PubMed
      24. Miller KM, Maas NL, Toczyski DP. Taking it off: regulation of H3 K56 acetylation by Hst3 and Hst4. Cell Cycle. 2006 Nov; 5(22):2561-5.
        View in: PubMed
      25. Maas NL, Miller KM, DeFazio LG, Toczyski DP. Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol Cell. 2006 Jul 7; 23(1):109-19.
        View in: PubMed
      26. Thornton BR, Ng TM, Matyskiela ME, Carroll CW, Morgan DO, Toczyski DP. An architectural map of the anaphase-promoting complex. Genes Dev. 2006 Feb 15; 20(4):449-60.
        View in: PubMed
      27. Toczyski DP. Methods for studying adaptation to the DNA damage checkpoint in yeast. Methods Enzymol. 2006; 409:150-65.
        View in: PubMed
      28. Vidanes GM, Bonilla CY, Toczyski DP. Complicated tails: histone modifications and the DNA damage response. Cell. 2005 Jul 1; 121(7):973-6.
        View in: PubMed
      29. Garber PM, Vidanes GM, Toczyski DP. Damage in transition. Trends Biochem Sci. 2005 Feb; 30(2):63-6.
        View in: PubMed
      30. Kaye JA, Melo JA, Cheung SK, Vaze MB, Haber JE, Toczyski DP. DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr Biol. 2004 Dec 14; 14(23):2096-106.
        View in: PubMed
      31. Thornton BR, Chen KC, Cross FR, Tyson JJ, Toczyski DP. Cycling without the cyclosome: modeling a yeast strain lacking the APC. Cell Cycle. 2004 May; 3(5):629-33.
        View in: PubMed
      32. Thornton BR, Toczyski DP. Securin and B-cyclin/CDK are the only essential targets of the APC. Nat Cell Biol. 2003 Dec; 5(12):1090-4.
        View in: PubMed
      33. Melo J, Toczyski D. A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol. 2002 Apr; 14(2):237-45.
        View in: PubMed
      34. Melo JA, Cohen J, Toczyski DP. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 2001 Nov 1; 15(21):2809-21.
        View in: PubMed
      35. Galgoczy DJ, Toczyski DP. Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast. Mol Cell Biol. 2001 Mar; 21(5):1710-8.
        View in: PubMed
      36. Toczyski DP, Galgoczy DJ, Hartwell LH. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell. 1997 Sep 19; 90(6):1097-106.
        View in: PubMed
      37. Paulovich AG, Toczyski DP, Hartwell LH. When checkpoints fail. Cell. 1997 Feb 7; 88(3):315-21.
        View in: PubMed
      38. Toczyski DP, Matera AG, Ward DC, Steitz JA. The Epstein-Barr virus (EBV) small RNA EBER1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc Natl Acad Sci U S A. 1994 Apr 12; 91(8):3463-7.
        View in: PubMed
      39. Toczyski DP, Steitz JA. The cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1. Mol Cell Biol. 1993 Jan; 13(1):703-10.
        View in: PubMed
      40. Toczyski DP, Steitz JA. EAP, a highly conserved cellular protein associated with Epstein-Barr virus small RNAs (EBERs). EMBO J. 1991 Feb; 10(2):459-66.
        View in: PubMed
      Back to TOP