Erica Hutchins, PhD

Title(s)Assistant Professor, Cell and Tissue Biology
SchoolSchool of Dentistry
Address513 Parnassus Avenue, HSW, #740
San Francisco CA 94143
ORCID ORCID Icon0000-0002-4316-0333 Additional info
vCardDownload vCard

    Collapse Biography 
    Collapse Education and Training
    University of California, San Francisco, CA08/2022Diversity, Equity, and Inclusion Champion Training
    California Institute of Technology, Pasadena, CAPostdoctoral Training07/2022Developmental Biology
    University at Albany, State University of New York, Albany, NYPhD12/2013Biology

    Collapse Overview 
    Collapse Overview
    The Hutchins Lab seeks to map how post-transcriptional regulation controls developmental pluripotency and cell fate decisions in vivo, using vertebrate neural crest as a model.

    Neural crest cells are an essential stem cell population in the vertebrate embryo. During development, these cells must undergo coordinated induction, specification, and epithelial—mesenchymal transition (EMT) events to migrate and ultimately develop into a wide range of cell types that contribute to the adult organism.

    Dysregulated post-transcriptional regulatory linkages in neural crest can lead to congenital malformations and cancer in humans, and a thorough understanding of the mechanisms underlying these fundamental processes can provide new therapeutic targets for biomedical intervention.

    By leveraging systems-level approaches and cutting-edge developmental biology techniques to understand how neural crest cell state transitions are achieved post-transcriptionally to drive cell fate choices, we can begin to understand how these programs fail during development or may be hijacked during disease.

    The major research goals of our laboratory are:
    1) To identify the post-transcriptional regulatory linkages controlling neural crest fate decisions across developmental time and space
    2) To parse the intersection of intrinsic and extrinsic factors with post-transcriptional regulation during neural crest and nervous system development
    3) To leverage post-transcriptional regulatory linkages controlling EMT and migration in neural crest and neural crest-derived cancers

    Collapse Featured Content 
    Collapse Twitter