Sign in to edit your profile (add interests, mentoring, photo, etc.)

    Peter Sargent, PhD

    TitleProfessor
    SchoolUCSF School of Dentistry
    DepartmentCell and Tissue Biology
    Address513 Parnassus Ave, Med Sci
    San Francisco CA 94143
    Phone415-476-6156
      Other Positions
      TitleInterim Chair, Cell and Tissue Biology


       ORNG Applications 
       Websites
       Awarded Grants
       More Info

       Bibliographic 
       Publications
      Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help.
      List All   |   Timeline
      1. Stanchev D, Sargent PB. a7-Containing and non-a7-containing nicotinic receptors respond differently to spillover of acetylcholine. J Neurosci. 2011 Oct 19; 31(42):14920-30.
        View in: PubMed
      2. Sargent PB. Nicotinic receptors concentrated in the subsynaptic membrane do not contribute significantly to synaptic currents at an embryonic synapse in the chicken ciliary ganglion. J Neurosci. 2009 Mar 25; 29(12):3749-59.
        View in: PubMed
      3. Ryder MI, Sargent P, Perry D. Evolution and revolution: the curriculum reform process at UCSF. J Dent Educ. 2008 Dec; 72(12):1516-30.
        View in: PubMed
      4. Sargent PB, Saviane C, Nielsen TA, DiGregorio DA, Silver RA. Rapid vesicular release, quantal variability, and spillover contribute to the precision and reliability of transmission at a glomerular synapse. J Neurosci. 2005 Sep 7; 25(36):8173-87.
        View in: PubMed
      5. Rogers M, Sargent PB. Rapid activation of presynaptic nicotinic acetylcholine receptors by nerve-released transmitter. Eur J Neurosci. 2003 Dec; 18(11):2946-56.
        View in: PubMed
      6. Nguyen D, Sargent PB. Synaptic vesicle recycling at two classes of release sites in giant nerve terminals of the embryonic chicken ciliary ganglion. J Comp Neurol. 2002 Jun 24; 448(2):128-37.
        View in: PubMed
      7. Dourado M, Sargent PB. Properties of nicotinic receptors underlying Renshaw cell excitation by alpha-motor neurons in neonatal rat spinal cord. J Neurophysiol. 2002 Jun; 87(6):3117-25.
        View in: PubMed
      8. Sheets MD, Amersdorfer P, Finnern R, Sargent P, Lindquist E, Schier R, Hemingsen G, Wong C, Gerhart JC, Marks JD, Lindqvist E. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A. 1998 May 26; 95(11):6157-62.
        View in: PubMed
      9. Ullian EM, McIntosh JM, Sargent PB. Rapid synaptic transmission in the avian ciliary ganglion is mediated by two distinct classes of nicotinic receptors. J Neurosci. 1997 Oct 1; 17(19):7210-9.
        View in: PubMed
      10. Horch HL, Sargent PB. Effects of denervation on acetylcholine receptor clusters on frog cardiac ganglion neurons as revealed by quantitative laser scanning confocal microscopy. J Neurosci. 1996 Mar 1; 16(5):1720-9.
        View in: PubMed
      11. Wilson Horch HL, Sargent PB. Synaptic and extrasynaptic distribution of two distinct populations of nicotinic acetylcholine receptor clusters in the frog cardiac ganglion. J Neurocytol. 1996 Jan; 25(1):67-77.
        View in: PubMed
      12. Horch HL, Sargent PB. Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion. J Neurosci. 1995 Dec; 15(12):7778-95.
        View in: PubMed
      13. Ullian EM, Sargent PB. Pronounced cellular diversity and extrasynaptic location of nicotinic acetylcholine receptor subunit immunoreactivities in the chicken pretectum. J Neurosci. 1995 Nov; 15(11):7012-23.
        View in: PubMed
      14. Sargent PB, Garrett EN. The characterization of alpha-bungarotoxin receptors on the surface of parasympathetic neurons in the frog heart. Brain Res. 1995 May 22; 680(1-2):99-107.
        View in: PubMed
      15. Sargent PB. Double-label immunofluorescence with the laser scanning confocal microscope using cyanine dyes. Neuroimage. 1994 Nov; 1(4):288-95.
        View in: PubMed
      16. Sargent PB. The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci. 1993; 16:403-43.
        View in: PubMed
      17. Streichert LC, Sargent PB. The role of acetylcholinesterase in denervation supersensitivity in the frog cardiac ganglion. J Physiol. 1992 Jan; 445:249-60.
        View in: PubMed
      18. Sargent PB, Bryan GK, Streichert LC, Garrett EN. Denervation does not alter the number of neuronal bungarotoxin binding sites on autonomic neurons in the frog cardiac ganglion. J Neurosci. 1991 Nov; 11(11):3610-23.
        View in: PubMed
      19. Streichert LC, Sargent PB. Differential effects of denervation on acetylcholinesterase activity in parasympathetic and sympathetic ganglia of the frog, Rana pipiens. J Neurobiol. 1990 Sep; 21(6):938-49.
        View in: PubMed
      20. Streichert LC, Sargent PB. Bouton ultrastructure and synaptic growth in a frog autonomic ganglion. J Comp Neurol. 1989 Mar 1; 281(1):159-68.
        View in: PubMed
      21. Sargent PB, Pang DZ. Acetylcholine receptor-like molecules are found in both synaptic and extrasynaptic clusters on the surface of neurons in the frog cardiac ganglion. J Neurosci. 1989 Mar; 9(3):1062-72.
        View in: PubMed
      22. Sargent PB, Pike SH, Nadel DB, Lindstrom JM. Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog. J Neurosci. 1989 Feb; 9(2):565-73.
        View in: PubMed
      23. Sargent PB, Pang DZ. Denervation alters the size, number, and distribution of clusters of acetylcholine receptor-like molecules on frog cardiac ganglion neurons. Neuron. 1988 Nov; 1(9):877-86.
        View in: PubMed
      24. Heathcote RD, Sargent PB. Growth and morphogenesis of an autonomic ganglion. I. Matching neurons with target. J Neurosci. 1987 Aug; 7(8):2493-501.
        View in: PubMed
      25. Heathcote RD, Sargent PB. Growth and morphogenesis of an autonomic ganglion. II. Establishment of neuron position. J Neurosci. 1987 Aug; 7(8):2502-9.
        View in: PubMed
      26. Lindstrom J, Criado M, Ratnam M, Whiting P, Ralston S, Rivier J, Sarin V, Sargent P. Using monoclonal antibodies to determine the structures of acetylcholine receptors from electric organs, muscles, and neurons. Ann N Y Acad Sci. 1987; 505:208-25.
        View in: PubMed
      27. Ratnam M, Nguyen DL, Rivier J, Sargent PB, Lindstrom J. Transmembrane topography of nicotinic acetylcholine receptor: immunochemical tests contradict theoretical predictions based on hydrophobicity profiles. Biochemistry. 1986 May 6; 25(9):2633-43.
        View in: PubMed
      28. Ratnam M, Sargent PB, Sarin V, Fox JL, Nguyen DL, Rivier J, Criado M, Lindstrom J. Location of antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping. Biochemistry. 1986 May 6; 25(9):2621-32.
        View in: PubMed
      29. Heathcote RD, Sargent PB. Loss of supernumerary axons during neuronal morphogenesis. J Neurosci. 1985 Jul; 5(7):1940-6.
        View in: PubMed
      30. Heathcote RD, Sargent PB. The genesis and differentiation of neurons in a frog parasympathetic ganglion. Dev Biol. 1984 Sep; 105(1):102-14.
        View in: PubMed
      31. Sargent PB, Hedges BE, Tsavaler L, Clemmons L, Tzartos S, Lindstrom JM. Structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by cross-reacting monoclonal antibodies. J Cell Biol. 1984 Feb; 98(2):609-18.
        View in: PubMed
      32. Sargent PB. The number of synaptic boutons terminating on Xenopus cardiac ganglion cells is directly correlated with cell size. J Physiol. 1983 Oct; 343:85-104.
        View in: PubMed
      33. Sargent PB, Dennis MJ. The influence of normal innervation upon abnormal synaptic connections between frog parasympathetic neurons. Dev Biol. 1981 Jan 15; 81(1):65-73.
        View in: PubMed
      34. Burden SJ, Sargent PB, McMahan UJ. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J Cell Biol. 1979 Aug; 82(2):412-25.
        View in: PubMed
      35. Dennis MJ, Sargent PB. Loss of extrasynaptic acetylcholine sensitivity upon reinnervation of parasympathetic ganglion cells. J Physiol. 1979 Apr; 289:263-75.
        View in: PubMed
      36. Dennis MJ, Sargent PB. Multiple innervation of normal and re-innervated parasympathetic neurones in the frog cardiac ganglion. J Physiol. 1978 Aug; 281:63-75.
        View in: PubMed
      37. Sargent PB, Dennis MJ. Formation of synapses between parasympathetic neurones deprived of preganglionic innervation. Nature. 1977 Aug 4; 268(5619):456-8.
        View in: PubMed
      38. Sargent PB. Synthesis of acetylcholine by excitatory motoneurons in central nervous system of the leech. J Neurophysiol. 1977 Mar; 40(2):453-60.
        View in: PubMed
      39. Sargent PB, Yau KW, Nicholls JG. Extrasynaptic receptors on cell bodies of neurons in central nervous system of the leech. J Neurophysiol. 1977 Mar; 40(2):446-52.
        View in: PubMed
      40. Berg DK, Kelly RB, Sargent PB, Williamson P, Hall ZW. Binding of -bungarotoxin to acetylcholine receptors in mammalian muscle (snake venom-denervated muscle-neonatal muscle-rat diaphragm-SDS-polyacrylamide gel electrophoresis). Proc Natl Acad Sci U S A. 1972 Jan; 69(1):147-51.
        View in: PubMed
      Peter's Networks
      Related Concepts
      Derived automatically from this person's publications.
      _
      Co-Authors
      People in Profiles who have published with this person.
      _
      Related Authors
      People who share related concepts with this person.
      _
      Back to TOP