Phillip Dumesic, MD, PhD

Title(s)Assistant Professor, Diabetes Center
SchoolSchool of Medicine
Address513 Parnassus Avenue, HSW, #1118
San Francisco CA 94143
Phone415-514-0594
ORCID ORCID Icon0000-0002-5843-2864 Additional info
vCardDownload vCard

    Collapse Biography 
    Collapse Education and Training
    Dana-Farber Cancer Institute, Boston, MAPostdoctoral2024Metabolism
    University of California, San Francisco, CAPostdoctoral2017Biochemistry
    University of California, San Francisco, CAMD2016Medicine
    University of California, San Francisco, CAPhD2014Genetics
    Stanford University, Stanford, CABS2006Biological Sciences
    Collapse Awards and Honors
    NIDDK2021  - 2027K99/R00 Pathway to Independence Award
    Barnstable Brown Diabetes Center2023Rising Star in Diabetes and Obesity Research
    Damon Runyon Cancer Research Foundation2017  - 2021Fellowship Award
    American Society for Cell Biology2015Kaluza Prize Finalist
    UCSF Tetrad Graduate Program2011Teaching Award
    UCSF School of Medicine2009Dean's Prize in Research
    Stanford Program in Epithelial Biology2006Research Award
    Stanford University2005Deans' Award for Academic Accomplishment
    Barry Goldwater Scholarship and Excellence in Education Foundation2005Goldwater Scholarship
    Stanford University2006Firestone Medal for Excellence in Research
    Stanford University2006J.E. Wallace Sterling Award for Scholastic Achievement
    Stanford University2004Hoefer Prize for Excellence in Undergraduate Writing
    Stanford University2003President's Award for Academic Excellence

    Collapse Overview 
    Collapse Overview
    Energy metabolism comprises decisions by which cells shepherd the energy contained in chemical bonds. Cells transform, store, allocate, and deploy this energy in coordinated ways to influence nearly all mammalian physiology—from body heat produced by thermogenic fat to physical force generated by working muscle. We study how genetic programs instruct cellular decisions in energy metabolism, how organisms coordinate such decisions to balance systemic energy intake with expenditure, and how new therapies might modulate these processes to treat diseases such as obesity, diabetes, sarcopenia, and cachexia. Our syncretic approach unites genetics, biochemistry, and mouse physiology while leveraging individual curiosity and diverse ways of thought.

    Collapse Research 
    Collapse Research Activities and Funding
    Translational regulation of PGC1a and oxidative metabolism
    NIDDK 4R00DK125722Aug 2, 2024 - Jul 31, 2027
    Role: Principal Investigator

    Collapse ORNG Applications 
    Collapse Featured Publications

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. RBM43 controls PGC1α translation and a PGC1α-STING signaling axis. In review. 2024 . Dumesic PA, Wilensky SE, Bose S, Van Vranken JG, Gygi SP, Spiegelman BM.
    2. p38α kinase governs muscle strength through PGC1α in mice. Acta Physiol (Oxf). 2024 Nov; 240(11):e14234. Herrera-Melle L, Cicuéndez B, López JA, Dumesic PA, Wilensky SE, Rodríguez E, Leiva-Vega L, Caballero A, León M, Vázquez J, Spiegelman BM, Folgueira C, Mora A, Sabio G. PMID: 39361268.
      View in: PubMed   Mentions:    Fields:    Translation:Animals
    3. Remodeling p38 signaling in muscle controls locomotor activity via IL-15. Sci Adv. 2024 Aug 16; 10(33):eadn5993. Folgueira C, Herrera-Melle L, López JA, Galvan-Alvarez V, Martin-Rincon M, Cuartero MI, García-Culebras A, Dumesic PA, Rodríguez E, Leiva-Vega L, León M, Porteiro B, Iglesias C, Torres JL, Hernández-Cosido L, Bonacasa C, Marcos M, Moro MÁ, Vázquez J, Calbet JAL, Spiegelman BM, Mora A, Sabio G. PMID: 39141732; PMCID: PMC11323882.
      View in: PubMed   Mentions:    Fields:    Translation:HumansAnimalsCells
    4. Development of a functional beige fat cell line uncovers independent subclasses of cells expressing UCP1 and the futile creatine cycle. Cell Metab. 2024 Sep 03; 36(9):2146-2155.e5. Vargas-Castillo A, Sun Y, Smythers AL, Grauvogel L, Dumesic PA, Emont MP, Tsai LT, Rosen ED, Zammit NW, Shaffer SM, Ordonez M, Chouchani ET, Gygi SP, Wang T, Sharma AK, Balaz M, Wolfrum C, Spiegelman BM. PMID: 39084217.
      View in: PubMed   Mentions:    Fields:    Translation:AnimalsCells
    5. REPTOR and CREBRF encode key regulators of muscle energy metabolism. Nat Commun. 2023 Aug 15; 14(1):4943. Saavedra P, Dumesic PA, Hu Y, Filine E, Jouandin P, Binari R, Wilensky SE, Rodiger J, Wang H, Chen W, Liu Y, Spiegelman BM, Perrimon N. PMID: 37582831; PMCID: PMC10427696.
      View in: PubMed   Mentions: 4     Fields:    Translation:AnimalsCells
    6. Isolation of extracellular fluids reveals novel secreted bioactive proteins from muscle and fat tissues. Cell Metab. 2023 Mar 07; 35(3):535-549.e7. Mittenbühler MJ, Jedrychowski MP, Van Vranken JG, Sprenger HG, Wilensky S, Dumesic PA, Sun Y, Tartaglia A, Bogoslavski D, A M, Xiao H, Blackmore KA, Reddy A, Gygi SP, Chouchani ET, Spiegelman BM. PMID: 36681077; PMCID: PMC9998376.
      View in: PubMed   Mentions: 9     Fields:    Translation:AnimalsCells
    7. RBM43 links adipose inflammation and energy expenditure through translational regulation of PGC1a. bioRxiv. 2023 Jan 07. Dumesic PA, Wilensky SE, Bose S, Van Vranken JG, Gygi SP, Spiegelman BM. PMID: 36712038; PMCID: PMC9881917.
      View in: PubMed   Mentions: 1  
    8. SnapShot: Regulation and biology of PGC-1a. Cell. 2022 Apr 14; 185(8):1444-1444.e1. Jannig PR, Dumesic PA, Spiegelman BM, Ruas JL. PMID: 35427500.
      View in: PubMed   Mentions: 19     Fields:    Translation:AnimalsCells
    9. Mitochondrial TNAP controls thermogenesis by hydrolysis of phosphocreatine. Nature. 2021 May; 593(7860):580-585. Sun Y, Rahbani JF, Jedrychowski MP, Riley CL, Vidoni S, Bogoslavski D, Hu B, Dumesic PA, Zeng X, Wang AB, Knudsen NH, Kim CR, Marasciullo A, Millán JL, Chouchani ET, Kazak L, Spiegelman BM. PMID: 33981039; PMCID: PMC8287965.
      View in: PubMed   Mentions: 41     Fields:    Translation:AnimalsCells
    10. Dynamic changes in chromatin accessibility, altered adipogenic gene expression, and total versus de novo fatty acid synthesis in subcutaneous adipose stem cells of normal-weight polycystic ovary syndrome (PCOS) women during adipogenesis: evidence of cellular programming. Clin Epigenetics. 2020 11 23; 12(1):181. Leung KL, Sanchita S, Pham CT, Davis BA, Okhovat M, Ding X, Dumesic P, Grogan TR, Williams KJ, Morselli M, Ma F, Carbone L, Li X, Pellegrini M, Dumesic DA, Chazenbalk GD. PMID: 33228780; PMCID: PMC7686698.
      View in: PubMed   Mentions: 10     Fields:    Translation:HumansCells
    11. ATP Hydrolysis by the SNF2 Domain of Dnmt5 Is Coupled to Both Specific Recognition and Modification of Hemimethylated DNA. Mol Cell. 2020 07 02; 79(1):127-139.e4. Dumesic PA, Stoddard CI, Catania S, Narlikar GJ, Madhani HD. PMID: 32437639; PMCID: PMC7335330.
      View in: PubMed   Mentions: 7     Fields:    Translation:AnimalsCells
    12. Evolutionary Persistence of DNA Methylation for Millions of Years after Ancient Loss of a De Novo Methyltransferase. Cell. 2020 Feb 20; 180(4):816. Catania S, Dumesic PA, Pimentel H, Nasif A, Stoddard CI, Burke JE, Diedrich JK, Cooke S, Shea T, Gienger E, Lintner R, Yates JR, Hajkova P, Narlikar GJ, Cuomo CA, Pritchard JK, Madhani HD. PMID: 32084344; PMCID: PMC7201975.
      View in: PubMed   Mentions: 6     Fields:    
    13. Evolutionary Persistence of DNA Methylation for Millions of Years after Ancient Loss of a De Novo Methyltransferase. Cell. 2020 01 23; 180(2):263-277.e20. Catania S, Dumesic PA, Pimentel H, Nasif A, Stoddard CI, Burke JE, Diedrich JK, Cook S, Shea T, Geinger E, Lintner R, Yates JR, Hajkova P, Narlikar GJ, Cuomo CA, Pritchard JK, Madhani HD. PMID: 31955845; PMCID: PMC7197499.
      View in: PubMed   Mentions: 44     Fields:    Translation:AnimalsCells
    14. An Evolutionarily Conserved uORF Regulates PGC1α and Oxidative Metabolism in Mice, Flies, and Bluefin Tuna. Cell Metab. 2019 07 02; 30(1):190-200.e6. Dumesic PA, Egan DF, Gut P, Tran MT, Parisi A, Chatterjee N, Jedrychowski M, Paschini M, Kazak L, Wilensky SE, Dou F, Bogoslavski D, Cartier JA, Perrimon N, Kajimura S, Parikh SM, Spiegelman BM. PMID: 31105043; PMCID: PMC6620024.
      View in: PubMed   Mentions: 26     Fields:    Translation:HumansAnimalsCells
    15. Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathog. 2016 Dec; 12(12):e1006051. Clarke SC, Dumesic PA, Homer CM, O'Donoghue AJ, La Greca F, Pallova L, Majer P, Madhani HD, Craik CS. PMID: 27977806; PMCID: PMC5158083.
      View in: PubMed   Mentions: 21     Fields:    Translation:Animals
    16. Noncanoncial signal recognition particle RNAs in a major eukaryotic phylum revealed by purification of SRP from the human pathogen Cryptococcus neoformans. Nucleic Acids Res. 2015 Oct 15; 43(18):9017-27. Dumesic PA, Rosenblad MA, Samuelsson T, Nguyen T, Moresco JJ, Yates JR, Madhani HD. PMID: 26275773; PMCID: PMC4605306.
      View in: PubMed   Mentions: 2     Fields:    Translation:HumansAnimalsCells
    17. Product binding enforces the genomic specificity of a yeast polycomb repressive complex. Cell. 2015 Jan 15; 160(1-2):204-18. Dumesic PA, Homer CM, Moresco JJ, Pack LR, Shanle EK, Coyle SM, Strahl BD, Fujimori DG, Yates JR, Madhani HD. PMID: 25533783; PMCID: PMC4303595.
      View in: PubMed   Mentions: 73     Fields:    Translation:AnimalsCells
    18. Recognizing the enemy within: licensing RNA-guided genome defense. Trends Biochem Sci. 2014 Jan; 39(1):25-34. Dumesic PA, Madhani HD. PMID: 24280023; PMCID: PMC3902128.
      View in: PubMed   Mentions: 17     Fields:    Translation:HumansAnimalsCells
    19. The spliceosome as a transposon sensor. RNA Biol. 2013 Nov; 10(11):1653-60. Dumesic PA, Madhani HD. PMID: 24418889; PMCID: PMC3907475.
      View in: PubMed   Mentions: 7     Fields:    Translation:HumansAnimalsCells
    20. Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell. 2013 Feb 28; 152(5):957-68. Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ, Thompson J, Moresco JJ, Yates JR, Bartel DP, Madhani HD. PMID: 23415457; PMCID: PMC3645481.
      View in: PubMed   Mentions: 99     Fields:    Translation:AnimalsCells
    21. Ers1 links HP1 to RNAi. Proc Natl Acad Sci U S A. 2012 Jul 10; 109(28):11258-63. Rougemaille M, Braun S, Coyle S, Dumesic PA, Garcia JF, Isaac RS, Libri D, Narlikar GJ, Madhani HD. PMID: 22733737; PMCID: PMC3396509.
      View in: PubMed   Mentions: 17     Fields:    Translation:AnimalsCells
    22. Combinatorial, site-specific requirement for heterochromatic silencing factors in the elimination of nucleosome-free regions. Genes Dev. 2010 Aug 15; 24(16):1758-71. Garcia JF, Dumesic PA, Hartley PD, El-Samad H, Madhani HD. PMID: 20675407; PMCID: PMC2922504.
      View in: PubMed   Mentions: 39     Fields:    Translation:AnimalsCells
    23. Erk1/2 MAP kinases are required for epidermal G2/M progression. J Cell Biol. 2009 May 04; 185(3):409-22. Dumesic PA, Scholl FA, Barragan DI, Khavari PA. PMID: 19414607; PMCID: PMC2700391.
      View in: PubMed   Mentions: 49     Fields:    Translation:HumansAnimalsCells
    24. Selective role for Mek1 but not Mek2 in the induction of epidermal neoplasia. Cancer Res. 2009 May 01; 69(9):3772-8. Scholl FA, Dumesic PA, Barragan DI, Harada K, Charron J, Khavari PA. PMID: 19383924; PMCID: PMC3576816.
      View in: PubMed   Mentions: 33     Fields:    Translation:AnimalsCells
    25. Mek1/2 gene dosage determines tissue response to oncogenic Ras signaling in the skin. Oncogene. 2009 Mar 26; 28(12):1485-95. Scholl FA, Dumesic PA, Barragan DI, Charron J, Khavari PA. PMID: 19198628; PMCID: PMC3084589.
      View in: PubMed   Mentions: 13     Fields:    Translation:AnimalsCells
    26. Mek1/2 MAPK kinases are essential for Mammalian development, homeostasis, and Raf-induced hyperplasia. Dev Cell. 2007 Apr; 12(4):615-29. Scholl FA, Dumesic PA, Barragan DI, Harada K, Bissonauth V, Charron J, Khavari PA. PMID: 17419998.
      View in: PubMed   Mentions: 88     Fields:    Translation:HumansAnimalsCells
    27. Effects of active MEK1 expression in vivo. Cancer Lett. 2005 Dec 08; 230(1):1-5. Scholl FA, Dumesic PA, Khavari PA. PMID: 16253755.
      View in: PubMed   Mentions: 20     Fields:    Translation:HumansAnimalsCells
    28. Mek1 alters epidermal growth and differentiation. Cancer Res. 2004 Sep 01; 64(17):6035-40. Scholl FA, Dumesic PA, Khavari PA. PMID: 15342384.
      View in: PubMed   Mentions: 40     Fields:    Translation:HumansAnimalsCells
    29. Equivalent blastocyst rates after freezing murine embryos in Cryo Bio System high security or standard instruments-medicine-veterinarian straws. Fertil Steril. 2003 Sep; 80 Suppl 2:743-6. Walker DL, Hammitt DG, Dumesic PA, Thornhill AR. PMID: 14505748.
      View in: PubMed   Mentions:    Fields:    Translation:Animals