Saul Kato, PhD

Title(s)Associate Professor, Neurology
SchoolSchool of Medicine
Address675 Nelson Rising Lane, #471A
San Francisco CA 94158
Phone415-353-2173
ORCID ORCID Icon0000-0003-2990-8306 Additional info
vCardDownload vCard
    Other Positions
    Title(s)UCSF Weill Institute for Neurosciences


    Collapse Biography 
    Collapse Education and Training
    Stanford UniversityBSPhysics
    Stanford UniversityMSElectrical Engineering
    Columbia UniversityPhDNeurobiology and Behavior
    Collapse Awards and Honors
    UCSF2022Alice and Alfred Werth Endowed Professorship in Neuroscience
    Alfred P. Sloan Foundation2019  - 2020Sloan Research Fellowship

    Collapse Overview 
    Collapse Overview
    How does the brain produce flexible and effective behavior?

    Our lab develops and applies computational, cutting-edge engineering, and experimental approaches to basic and applied neuroscience and build theories of brain function. We also collaborate with other labs to apply our tools to probe brain dysfunction and disease.

    The production of flexible but controlled behavioral sequences in simpler animals may be an evolutionary foundation for higher cognitive abilities in humans. I study how real-time function emerges from the nervous system of C. elegans, a 1 millimeter long roundworm. Despite having only 302 neurons, this animal has a rich behavioral repertoire including probabilistic and directed taxis, associative learning, cooperation, and coordinated body movement. I combine dynamical systems analysis with the development and application of high-throughput, high-resolution neural activity imaging technologies to understand how this "low-n" neural network processes sensory stimuli and integrates them with an evolving internal state in order to produce competent, continuous behavior.

    On an entirely different evolutionary branch, organisms acquired the ability to harness large pools of largely undifferentiated neurons and shape them through development and learning in order to flexibly solve problems and drive complex tasks, thereby getting around the limited information capacity of the genome. I am also interested in understanding how these "high-n" neural systems achieve what they do, and determining what ingredients, or rules of assembly and operation, are required in order for such sophisticated problem-solving functions to emerge.
    Collapse In The News

    Collapse Research 
    Collapse Research Activities and Funding
    Next-Generation Microscopic Imaging Platforms for Live Brain Imaging
    Weill Neurohub Apr 10, 2020 - May 1, 2023
    Role: Lead Investigator
    Advanced Computational Methods for Understanding and Controlling Brain Dynamics
    Weill Institute Jul 1, 2019 - Jun 30, 2022
    Role: Co-Investigator
    Emergence of Functional Network Dynamics from Single Cell Properties
    NIH R35GM124735Aug 1, 2017 - Jul 31, 2022
    Role: Principal Investigator
    Long term high speed and magnification imaging of 3D migrations – cells and nematodes
    Program for Breakthrough Biomedical Research PBBR-TMC-7028659Aug 1, 2017 - Jul 31, 2018
    Role: Co-Investigator
    Dissecting whole brain neuronal network dynamics
    Program for Breakthrough Biomedical Research PBBR-NFR-7028580Jun 15, 2017 - Jun 14, 2018
    Role: Co-Investigator
    The Effect of Sleep on Neural Circuit Connections
    NIH R01NS087544Feb 1, 2014 - Jun 30, 2024
    Role: Co-Investigator

    Collapse Featured Content 
    Collapse Twitter

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Relative phase of distributed oscillatory dynamics implements a working memory in a simple brain. bioRxiv. 2024 Aug 11. Dunn RL, Costello C, Borchardt JM, Sprague DY, Chiu GC, Miller JM, L'Etoile N, Kato S. PMID: 39149308; PMCID: PMC11326443.
      View in: PubMed   Mentions:
    2. Unifying community-wide whole-brain imaging datasets enables robust automated neuron identification and reveals determinants of neuron positioning in C. elegans. bioRxiv. 2024 Jun 29. Sprague DY, Rusch K, Dunn RL, Borchardt JM, Ban S, Bubnis G, Chiu GC, Wen C, Suzuki R, Chaudhary S, Lee HJ, Yu Z, Dichter B, Ly R, Onami S, Lu H, Kimura KD, Yemini E, Kato S. PMID: 38746302; PMCID: PMC11092512.
      View in: PubMed   Mentions:
    3. Unifying community-wide whole-brain imaging datasets enables robust automated neuron identification and reveals determinants of neuron positioning in C. elegans. bioRxiv. 2024. Sprague DY, Rusch KW, Dunn RL, Borchardt JM, Bubnis G, Chiu GC, Wen C, Suzuki R, Chaudhary S, Dichter B, Ly R, Onami S, Lu H, Kimura K, Yemini E, Kato S. View Publication.
    4. Sleep is required to consolidate odor memory and remodel olfactory synapses. Cell. 2023 06 22; 186(13):2911-2928.e20. Chandra R, Farah F, Muñoz-Lobato F, Bokka A, Benedetti KL, Brueggemann C, Saifuddin MFA, Miller JM, Li J, Chang E, Varshney A, Jimenez V, Baradwaj A, Nassif C, Alladin S, Andersen K, Garcia AJ, Bi V, Nordquist SK, Dunn RL, Garcia V, Tokalenko K, Soohoo E, Briseno F, Kaur S, Harris M, Guillen H, Byrd D, Fung B, Bykov AE, Odisho E, Tsujimoto B, Tran A, Duong A, Daigle KC, Paisner R, Zuazo CE, Lin C, Asundi A, Churgin MA, Fang-Yen C, Bremer M, Kato S, VanHoven MK, L'Étoile ND. PMID: 37269832; PMCID: PMC10354834.
      View in: PubMed   Mentions: 3     Fields:    Translation:AnimalsCells
    5. Cell specificity of adeno-associated virus (AAV) serotypes in human cortical organoids. bioRxiv. 2023. Stanton MM, Hariani HN, Sorokin J, Taylor PM, Sara Modan S, Brian G. Rash BG, Sneha B. Rao SB, Luigi Enriquez L, Daphne Quang D, Pei-Ken Hsu P-K, Justin Paek J, Dorah Owango D, Castrillo C, Nicola J, Ramkumar P, Lash A, Flanzer D, Shah K, Kato S, Skibinski G. View Publication.
    6. Neuroimmune cortical organoids overexpressing C4A exhibit multiple schizophrenia endophenotypes. bioRxiv. 2023. Stanton M, Modan S, Taylor P, Hariani H, Sorokin J, Rash B, Rao S, Lopez-Tobon A, Enriquez L, Dang B, Owango D, O'Neill S, Castrillo C, Nicola J, Ye K, Blattner, R, Gonzalez F, Antonio D, Ramkumar P, Lash A, Flanzer D, Bardehle S, Gyoneva S, Shah K, Kato S, Skibinski G. View Publication.
    7. Implicitization of biquadratic Bézier triangle and quadrilateral surfaces. arXiv. 2023. Borchardt J and Kato S. View Publication.
    8. A set of hub neurons and non-local connectivity features support global brain dynamics in C. elegans. Curr Biol. 2022 08 22; 32(16):3443-3459.e8. Uzel K, Kato S, Zimmer M. PMID: 35809568.
      View in: PubMed   Mentions: 8     Fields:    Translation:AnimalsCells
    9. Hierarchical confounder discovery in the experiment-machine learning cycle. Cell Patterns. 2022. Rogozhnikov A, Ramkumar P, Bedi R, Kato S, Escola GS. View Publication.
    10. Information theory rules out the reflex-chain model of C. elegans locomotion. biorxiv. 2022. Webb J and Kato S. View Publication.
    11. Demuxalot: scaled up genetic demultiplexing for single-cell sequencing. bioRxiv. 2021. Rogozhnikov A, Ramkumar P, Shah K, Bedi R, Kato S, Escola GS. View Publication.
    12. minimo: a linked data and metadata storage system for small labs. Journal of Open Source Software. 2021; 6(60):2979. Borchardt J, Dunn R, and Kato S. View Publication.
    13. Pycro-Manager: open-source software for customized and reproducible microscope control. Nat Methods. 2021 03; 18(3):226-228. Pinkard H, Stuurman N, Ivanov IE, Anthony NM, Ouyang W, Li B, Yang B, Tsuchida MA, Chhun B, Zhang G, Mei R, Anderson M, Shepherd DP, Hunt-Isaak I, Dunn RL, Jahr W, Kato S, Royer LA, Thiagarajah JR, Eliceiri KW, Lundberg E, Mehta SB, Waller L. PMID: 33674797; PMCID: PMC8532176.
      View in: PubMed   Mentions: 25     Fields:    
    14. Optimization and scaling of patient-derived brain organoids uncovers deep phenotypes of disease. bioRxiv. 2020. Shah K, Bedi R, Ramkumar P, Tong Z, Rash B, Stanton B, Sorokin J, Apaydin C, Batarse A, Bergamaschi J, Blattner R, Brown S, Bosshardt A, Castrillo C, Dang B, Drusinksy S, Enriquez L, Grayson D, Hilliard J, Hsu P-K, Johnson C, Jones R, Lash A, Lee C-Y, Li K, McKay A, Mount E, Nicola J, Oumzil I, Paek J, Pascoe D, Piepho A, Poust S, Quang D, Schultz M, Sims J, Taylor P, Treiman G, Wueseke O, Young N, Pollen A, Flanzer D, Chao D, Skibinski G, Kato S, Escola GS. View Publication.
    15. Soma-Targeted Imaging of Neural Circuits by Ribosome Tethering. Neuron. 2020 08 05; 107(3):454-469.e6. Chen Y, Jang H, Spratt PWE, Kosar S, Taylor DE, Essner RA, Bai L, Leib DE, Kuo TW, Lin YC, Patel M, Subkhangulova A, Kato S, Feinberg EH, Bender KJ, Knight ZA, Garrison JL. PMID: 32574560; PMCID: PMC7540731.
      View in: PubMed   Mentions: 40     Fields:    Translation:AnimalsCells
    16. A probabilistic atlas for cell identification. arxiv. 2019. Bubnis G, Ban S, Difranco MD, Kato S. View Publication.
    17. Regulation of two motor patterns enables the gradual adjustment of locomotion strategy in Caenorhabditis elegans. Elife. 2016 05 25; 5. Hums I, Riedl J, Mende F, Kato S, Kaplan HS, Latham R, Sonntag M, Traunmüller L, Zimmer M. PMID: 27222228; PMCID: PMC4880447.
      View in: PubMed   Mentions: 31     Fields:    Translation:AnimalsCells
    18. Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell. 2015 Oct 22; 163(3):656-69. Kato S, Kaplan HS, Schrödel T, Skora S, Lindsay TH, Yemini E, Lockery S, Zimmer M. PMID: 26478179.
      View in: PubMed   Mentions: 205     Fields:    Translation:AnimalsCells
    19. A perspective on future research directions in information theory. arXiv. 2015. Andrews JG, Dimakis A, Dolecek L, Effros M, Medard M, Milenkovic O, Montanari A, Vishwanath S, Yeh E, Berry R, Duffy K, Feizi S, Kato S, Kellis M, Licht S, Sorenson J, Varshney L, Vikalo H. View Publication.
    20. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat Methods. 2014 Jul; 11(7):727-730. Prevedel R, Yoon YG, Hoffmann M, Pak N, Wetzstein G, Kato S, Schrödel T, Raskar R, Zimmer M, Boyden ES, Vaziri A. PMID: 24836920; PMCID: PMC4100252.
      View in: PubMed   Mentions: 255     Fields:    Translation:AnimalsCells
    21. Temporal responses of C. elegans chemosensory neurons are preserved in behavioral dynamics. Neuron. 2014 Feb 05; 81(3):616-28. Kato S, Xu Y, Cho CE, Abbott LF, Bargmann CI. PMID: 24440227; PMCID: PMC4112952.
      View in: PubMed   Mentions: 62     Fields:    Translation:AnimalsCells
    22. Neuropeptide feedback modifies odor-evoked dynamics in Caenorhabditis elegans olfactory neurons. Nat Neurosci. 2010 May; 13(5):615-21. Chalasani SH, Kato S, Albrecht DR, Nakagawa T, Abbott LF, Bargmann CI. PMID: 20364145; PMCID: PMC2937567.
      View in: PubMed   Mentions: 136     Fields:    Translation:HumansAnimalsCells
    Saul's Networks
    Concepts (57)
    Derived automatically from this person's publications.
    _
    Co-Authors (7)
    People in Profiles who have published with this person.
    _
    Similar People (60)
    People who share similar concepts with this person.
    _
    Same Department
    Search Department
    _