Pamela England, PhD

Title(s)Professor, Pharmaceutical Chemistry
SchoolSchool of Pharmacy
Address600 16th Street, #N512B
San Francisco CA 94158
ORCID ORCID Icon0000000223081048 Additional info
vCardDownload vCard

    Collapse Biography 
    Collapse Education and Training
    Massachusetts Institute of Technology, Cambridge, MAPhD1995Chemistry
    Woods Hole Marine Biological Laboratory, Neurobiology Course, Woods Hole, MA1995Neuroscience
    California Institute of Technology, Pasadena, CAPostdoc1999Chemistry and Neuroscience
    Woods Hole, Grass Fellow, Woods Hole, MA2000Neuroscience
    Stanford University, Palo Alto, CAPostdoc2000Neuroscience
    University of California, San Francisco, CA2022Diversity, Equity, and Inclusion Chamption Training
    Collapse Awards and Honors
    UCSF2021Dean’s Award for Excellence in Teaching
    UCSF2020CTSI Catalyst Award
    UCSF2019Dean’s Award for Excellence in Teaching
    UCSF2018Dean’s Award for Excellence in Teaching
    UCSF2015Roger's Family Foundation Bridging the GAP Award
    UCSF2014CTSI Catalyst Award
    UCSF2006McKnight Technological Innovations in Neuroscience Award
    Caltech1998Grass Foundation Fellowship
    Caltech1997NRSA Postdoctoral Fellowship
    Caltech1996Gosney Postdoctoral Fellowship
    UCLA1989UCLA Chemists Association Award for Research
    UCLA1989Merck Index Award
    UCSF2021Dean's Award for Excellence in Teaching

    Collapse Overview 
    Collapse Overview
    Research in the England Lab focuses on the development and use of small molecules to manipulate and monitor the activities of biologically important ligand-receptor systems. Execution of these research projects typically involves a combination of synthetic chemistry, computational chemistry, structural biology, and appropriate biochemical and biological assays. Two systems currently being studied are glutamate-gated ion channels and hormone-activated nuclear receptors.

    The neurotransmitter glutamate drives specific changes in the functioning of synaptic glutamate-gated ion channels. These changes modulate the strength of synaptic transmission, encode information, and allow for adaptive behaviors. We are developing and using small molecules to track the functional states of glutamate-gated ion channels at neuronal synapses.

    Natural hormones and other small lipophilic molecules drive specific changes in the structure and activity of nuclear receptors. In response to hormone binding, nuclear receptors form protein complexes that control gene transcription events underlying development, homeostasis, and many diseases. We are designing small molecules to manipulate gene transcription by precisely controlling the activity of nuclear receptors.

    Collapse Research 
    Collapse Research Activities and Funding
    Selective modulators for the nuclear receptor Nurr1
    NIH R01NS108404Jul 1, 2018 - Jun 30, 2023
    Role: Principal Investigator
    Selectively Targeting Opioid Receptor Heterodimers
    NIH R21DA031574Feb 15, 2011 - Jan 31, 2015
    Role: Co-Principal Investigator
    Chemical Basis for Potassium Channel Modulation
    NIH R01HL071615Jul 15, 2003 - Jun 30, 2008
    Role: Principal Investigator
    NIH F32NS009999Dec 1, 1996
    Role: Principal Investigator

    Collapse ORNG Applications 
    Collapse Academic Senate

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Analogs of the Dopamine Metabolite 5,6-Dihydroxyindole Bind Directly to and Activate the Nuclear Receptor Nurr1. ACS Chem Biol. 2021 07 16; 16(7):1159-1163. Kholodar SA, Lang G, Cortopassi WA, Iizuka Y, Brah HS, Jacobson MP, England PM. PMID: 34165961; PMCID: PMC9064169.
      View in: PubMed   Mentions: 7     Fields:    Translation:AnimalsCells
    2. Covalent Modification and Regulation of the Nuclear Receptor Nurr1 by a Dopamine Metabolite. Cell Chem Biol. 2019 05 16; 26(5):674-685.e6. Bruning JM, Wang Y, Oltrabella F, Tian B, Kholodar SA, Liu H, Bhattacharya P, Guo S, Holton JM, Fletterick RJ, Jacobson MP, England PM. PMID: 30853418; PMCID: PMC7185887.
      View in: PubMed   Mentions: 26     Fields:    Translation:HumansAnimalsCells
    3. Development of 5N-Bicalutamide, a High-Affinity Reversible Covalent Antiandrogen. ACS Chem Biol. 2017 12 15; 12(12):2934-2939. de Jesus Cortez F, Nguyen P, Truillet C, Tian B, Kuchenbecker KM, Evans MJ, Webb P, Jacobson MP, Fletterick RJ, England PM. PMID: 28981251.
      View in: PubMed   Mentions: 3     Fields:    Translation:HumansCells
    4. Disulfide-Trapping Identifies a New, Effective Chemical Probe for Activating the Nuclear Receptor Human LRH-1 (NR5A2). PLoS One. 2016; 11(7):e0159316. de Jesus Cortez F, Suzawa M, Irvy S, Bruning JM, Sablin E, Jacobson MP, Fletterick RJ, Ingraham HA, England PM. PMID: 27467220; PMCID: PMC4965143.
      View in: PubMed   Mentions: 7     Fields:    Translation:HumansCells
    5. Developing a photoreactive antagonist. Methods Mol Biol. 2013; 995:121-9. England PM. PMID: 23494376.
      View in: PubMed   Mentions:    Fields:    Translation:AnimalsCells
    6. Critical role of trkB receptors in reactive axonal sprouting and hyperexcitability after axonal injury. J Neurophysiol. 2013 Feb; 109(3):813-24. Aungst S, England PM, Thompson SM. PMID: 23155176; PMCID: PMC3567381.
      View in: PubMed   Mentions: 11     Fields:    Translation:AnimalsCells
    7. Tuned-Affinity Bivalent Ligands for the Characterization of Opioid Receptor Heteromers. ACS Med Chem Lett. 2012 Aug 09; 3(8):640-644. Harvey JH, Long DH, England PM, Whistler JL. PMID: 23585918; PMCID: PMC3622216.
      View in: PubMed   Mentions: 13  
    8. Bridging the gaps between synapses, circuits, and behavior. Chem Biol. 2010 Jun 25; 17(6):607-15. England PM. PMID: 20609410.
      View in: PubMed   Mentions: 2     Fields:    Translation:HumansAnimalsCells
    9. AMPA receptors and synaptic plasticity: a chemist's perspective. Nat Chem Biol. 2010 Feb; 6(2):89-97. Fleming JJ, England PM. PMID: 20081822.
      View in: PubMed   Mentions: 13     Fields:    Translation:AnimalsCells
    10. Developing a complete pharmacology for AMPA receptors: a perspective on subtype-selective ligands. Bioorg Med Chem. 2010 Feb 15; 18(4):1381-7. Fleming JJ, England PM. PMID: 20096591.
      View in: PubMed   Mentions: 4     Fields:    Translation:AnimalsCells
    11. TrkB signaling is required for both the induction and maintenance of tissue and nerve injury-induced persistent pain. J Neurosci. 2009 Apr 29; 29(17):5508-15. Wang X, Ratnam J, Zou B, England PM, Basbaum AI. PMID: 19403818; PMCID: PMC2720992.
      View in: PubMed   Mentions: 39     Fields:    Translation:AnimalsCells
    12. 6-Azido-7-nitro-1,4-dihydroquinoxaline-2,3-dione (ANQX) forms an irreversible bond to the active site of the GluR2 AMPA receptor. J Med Chem. 2008 Sep 25; 51(18):5856-60. Cruz LA, Estébanez-Perpiñá E, Pfaff S, Borngraeber S, Bao N, Blethrow J, Fletterick RJ, England PM. PMID: 18754610; PMCID: PMC2945402.
      View in: PubMed   Mentions: 4     Fields:    Translation:Cells
    13. Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J Neurosci. 2008 Sep 10; 28(37):9092-100. Argilli E, Sibley DR, Malenka RC, England PM, Bonci A. PMID: 18784289; PMCID: PMC2586328.
      View in: PubMed   Mentions: 129     Fields:    Translation:AnimalsCells
    14. TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation. Nat Neurosci. 2008 Apr; 11(4):497-504. Kaneko M, Hanover JL, England PM, Stryker MP. PMID: 18311133; PMCID: PMC2413329.
      View in: PubMed   Mentions: 48     Fields:    Translation:Animals
    15. A subtype-selective, use-dependent inhibitor of native AMPA receptors. J Am Chem Soc. 2007 Apr 25; 129(16):4902-3. Nilsen A, England PM. PMID: 17391037.
      View in: PubMed   Mentions: 16     Fields:    Translation:Animals
    16. Rapid photoinactivation of native AMPA receptors on live cells using ANQX. Sci STKE. 2006 Apr 18; 2006(331):pl1. England PM. PMID: 16622183.
      View in: PubMed   Mentions: 2     Fields:    Translation:AnimalsCells
    17. Photoinactivation of native AMPA receptors reveals their real-time trafficking. Neuron. 2005 Dec 22; 48(6):977-85. Adesnik H, Nicoll RA, England PM. PMID: 16364901.
      View in: PubMed   Mentions: 103     Fields:    Translation:AnimalsCells
    18. A chemical-genetic approach to studying neurotrophin signaling. Neuron. 2005 Apr 07; 46(1):13-21. Chen X, Ye H, Kuruvilla R, Ramanan N, Scangos KW, Zhang C, Johnson NM, England PM, Shokat KM, Ginty DD. PMID: 15820690.
      View in: PubMed   Mentions: 149     Fields:    Translation:AnimalsCells
    19. Photochemically knocking out glutamate receptors in vivo. J Am Chem Soc. 2004 Nov 03; 126(43):13886-7. Chambers JJ, Gouda H, Young DM, Kuntz ID, England PM. PMID: 15506725.
      View in: PubMed   Mentions: 12     Fields:    Translation:AnimalsCells
    20. Unnatural amino acid mutagenesis: a precise tool for probing protein structure and function. Biochemistry. 2004 Sep 21; 43(37):11623-9. England PM. PMID: 15362846.
      View in: PubMed   Mentions: 13     Fields:    Translation:AnimalsCells
    Pamela's Networks
    Concepts (144)
    Derived automatically from this person's publications.
    Co-Authors (14)
    People in Profiles who have published with this person.
    Similar People (60)
    People who share similar concepts with this person.
    Same Department
    Search Department