Anatol Kreitzer, PhD

Title(s)Assoc Prof in Residence, Business Service Ctr
SchoolChancellor/EVC/FAS
vCardDownload vCard

    Collapse Biography 
    Collapse Education and Training
    Harvard University, MAPhD05/2001Neurobiology
    Collapse Awards and Honors
    Society for Neuroscience2011Young Investigator Award
    McKnight Endowment for Neuroscience2010McKnight Scholar
    Pew Charitable Trusts2008Pew Scholar

    Collapse Overview 
    Collapse Overview
    Areas of Investigation
    The research in our laboratory is focused on understanding the mechanisms controlling cellular, synaptic, and circuit function in the basal ganglia that control motor planning, learning, and movement. Our long-term goal is to understand how neural activity and plasticity in these circuits shapes motor behavior and how neurological disorders such as Parkinson's disease (PD) and Huntington's disease (HD) affect synaptic, cellular, and circuit function in the basal ganglia.

    Significance
    The control of movement is among the most fundamental functions of the nervous system. The basal ganglia, and the striatum in particular, play a critical role in the selection and learning of appropriate actions. Individuals suffering from movement disorders such as PD or HD have profound difficulties performing appropriate movements, yet the relation between aberrant neural activity and motor problems is not well understood. A thorough knowledge of the mechanisms underlying circuit function in the basal ganglia, both in health and disease, will provide a framework that can be used to develop novel treatments for neurological disorders.

    Approaches
    To address the functional properties of basal ganglia motor circuits, our laboratory applies a variety of experimental approaches. We use whole-cell patch-clamp electrophysiology in brain slices, which allows us to record and analyze the properties of synaptic currents from individual neurons. Transgenic animals expressing molecular markers in specific subpopulations of neurons allow for the in vitro and in vivo identification and modification of basal ganglia circuit function. Optogenetic manipulations provide a tool for cell-type specific manipulations in vitro and in vivo. Additionally, we use genetic and pharmacological animal models of human disease, as well as a battery of behavioral testing procedures.

    Contributions
    Two parallel basal ganglia pathways have been described, which are proposed to exert opposing influences on motor function. According to this classical model, activation of the direct pathway facilitates movement and activation of the indirect pathway inhibits movement. Imbalances in these circuits are thought to contribute to motor deficits in PD and HD. However, because this model has never been empirically tested, the specific function of these circuits in behaving animals remains unknown. We have developed the capability to directly activate basal ganglia circuitry in vivo, using optogenetic control of direct- and indirect-pathway medium spiny projection neurons (MSNs). Bilateral excitation of indirect-pathway MSNs elicited a parkinsonian state, distinguished by increased freezing, bradykinesia, and decreased locomotor initiations. In contrast, activation of direct-pathway MSNs reduced freezing and increased locomotion. In a mouse model of Parkinson’s disease, direct pathway activation completely rescued deficits in freezing, bradykinesia, and locomotor initiation. Our findings establish a critical role for basal ganglia circuitry in the bidirectional regulation of motor behavior and indicate that modulation of direct pathway circuitry may represent an effective therapeutic strategy for ameliorating parkinsonian motor deficits.

    Questions Addressed in Ongoing Studies

    What is the functional role of neural activity in direct and indirect pathway MSNs?
    How is neural activity in the direct and indirect pathways integrated in basal ganglia output nuclei?
    How do striatal microcircuits function to shape direct and indirect pathway output?
    What role does dopamine play in striatal microcircuit function?
    How does loss of dopamine impact basal ganglia circuit function?
    How does dopamine modulate synaptic plasticity in the striatum?
    How can we restore basal ganglia circuit function in the absence of dopamine, such as during PD?

    Collapse Research 
    Collapse Research Activities and Funding
    Neural mechanisms linking need to reward
    NIH R01NS116626Aug 1, 2020 - Jul 31, 2023
    Role: Co-Principal Investigator
    Network basis of action selection
    NIH U01NS094342Sep 30, 2015 - Aug 31, 2018
    Role: Principal Investigator
    Optogenetic Study of ApoE4-Related Alzheimers Disease
    NIH RF1AG047655Jun 15, 2014 - May 31, 2019
    Role: Co-Principal Investigator
    Striatal Microcircuits: Regulation and Function
    NIH R01NS078435Jun 15, 2012 - May 31, 2018
    Role: Co-Principal Investigator
    Neuron- and Circuit-Specific Mechanisms and Adaptations Regulating Motor Function in Parkinson Disease Models
    NIH R01NS064984Apr 1, 2009 - Mar 31, 2025
    Role: Principal Investigator
    Mechanisms of Long-Term Depression in the Striatum
    NIH F32DA016879Sep 1, 2003 - Aug 31, 2006
    Role: Principal Investigator
    Presynaptic Mechanisms of Neural Plasticity
    NIH P01DA010154Sep 30, 1995 - Apr 30, 2018
    Role: Co-Investigator
    Predoctoral Training in Neurobiology
    NIH T32GM007449Sep 1, 1977 - Jun 30, 2018
    Role: Co-Principal Investigator

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Chronic hyperactivation of midbrain dopamine neurons causes preferential dopamine neuron degeneration. bioRxiv. 2024 May 13. Rademacher K, Doric Z, Haddad D, Mamaligas A, Liao SC, Creed RB, Kano K, Chatterton Z, Fu Y, Garcia JH, Vance V, Sei Y, Kreitzer A, Halliday GM, Nelson AB, Margolis EB, Nakamura K. PMID: 38645054; PMCID: PMC11030348.
      View in: PubMed   Mentions:
    2. Dopamine subsystems that track internal states. Nature. 2022 08; 608(7922):374-380. Grove JCR, Gray LA, La Santa Medina N, Sivakumar N, Ahn JS, Corpuz TV, Berke JD, Kreitzer AC, Knight ZA. PMID: 35831501; PMCID: PMC9365689.
      View in: PubMed   Mentions: 21     Fields:    Translation:AnimalsCells
    3. Striatal Indirect Pathway Dysfunction Underlies Motor Deficits in a Mouse Model of Paroxysmal Dyskinesia. J Neurosci. 2022 03 30; 42(13):2835-2848. Nelson AB, Girasole AE, Lee HY, Ptácek LJ, Kreitzer AC. PMID: 35165171; PMCID: PMC8973425.
      View in: PubMed   Mentions: 2     Fields:    Translation:AnimalsCells
    4. Frontostriatal Projections Regulate Innate Avoidance Behavior. J Neurosci. 2021 06 23; 41(25):5487-5501. Loewke AC, Minerva AR, Nelson AB, Kreitzer AC, Gunaydin LA. PMID: 34001628; PMCID: PMC8221601.
      View in: PubMed   Mentions: 8     Fields:    Translation:Animals
    5. An amygdala to brainstem circuit regulates defensive locomotion. IBRO Reports. 2019 Sep 1; 6:s11. Kreitzer KA. .
      View in: Publisher Site   Mentions:
    6. Thermal constraints on in vivo optogenetic manipulations. Nat Neurosci. 2019 07; 22(7):1061-1065. Owen SF, Liu MH, Kreitzer AC. PMID: 31209378; PMCID: PMC6592769.
      View in: PubMed   Mentions: 164     Fields:    Translation:AnimalsCells
    7. An open-source control system for in vivo fluorescence measurements from deep-brain structures. J Neurosci Methods. 2019 01 01; 311:170-177. Owen SF, Kreitzer AC. PMID: 30342106; PMCID: PMC6258340.
      View in: PubMed   Mentions: 8     Fields:    Translation:AnimalsCells
    8. Motor thalamus supports striatum-driven reinforcement. Elife. 2018 10 08; 7. Lalive AL, Lien AD, Roseberry TK, Donahue CH, Kreitzer AC. PMID: 30295606; PMCID: PMC6181560.
      View in: PubMed   Mentions: 11     Fields:    Translation:AnimalsCells
    9. An open-source control system for in vivo fluorescence measurements from deep-brain structures. bioRxiv. 2018 Aug 23; 399329. Owen OS, Kreitzer KA. .
      View in: Publisher Site   Mentions:
    10. Sequencing Diversity One Cell at a Time. Cell. 2018 08 09; 174(4):777-779. Oldham MC, Kreitzer AC. PMID: 30096308.
      View in: PubMed   Mentions: 2     Fields:    Translation:AnimalsCells
    11. A Genetically Encoded Fluorescent Sensor Enables Rapid and Specific Detection of Dopamine in Flies, Fish, and Mice. Cell. 2018 07 12; 174(2):481-496.e19. Sun F, Zeng J, Jing M, Zhou J, Feng J, Owen SF, Luo Y, Li F, Wang H, Yamaguchi T, Yong Z, Gao Y, Peng W, Wang L, Zhang S, Du J, Lin D, Xu M, Kreitzer AC, Cui G, Li Y. PMID: 30007419; PMCID: PMC6092020.
      View in: PubMed   Mentions: 297     Fields:    Translation:HumansAnimalsCells
    12. A genetically-encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. bioRxiv. 2018 May 31; 332528. Sun SF, Zeng ZJ, Jing JM, Zhou ZJ, Feng FJ, Owen OS, Luo LY, Li LF, Yamaguchi YT, Yong YZ, Gao GY, Peng PW, Wang WL, Zhang ZS, Du DJ, Lin LD, Xu XM, Kreitzer KA, Cui CG, Li LY. .
      View in: Publisher Site   Mentions:
    13. Fast-Spiking Interneurons Supply Feedforward Control of Bursting, Calcium, and Plasticity for Efficient Learning. Cell. 2018 02 08; 172(4):683-695.e15. Owen SF, Berke JD, Kreitzer AC. PMID: 29425490; PMCID: PMC5810594.
      View in: PubMed   Mentions: 69     Fields:    Translation:AnimalsCells
    14. A Subpopulation of Striatal Neurons Mediates Levodopa-Induced Dyskinesia. Neuron. 2018 02 21; 97(4):787-795.e6. Girasole AE, Lum MY, Nathaniel D, Bair-Marshall CJ, Guenthner CJ, Luo L, Kreitzer AC, Nelson AB. PMID: 29398356; PMCID: PMC6233726.
      View in: PubMed   Mentions: 51     Fields:    Translation:AnimalsCells
    15. Editorial overview: Neurobiology of disease (2018). Curr Opin Neurobiol. 2018 02; 48:iv-vi. Bagni C, Kreitzer AC. PMID: 29402499.
      View in: PubMed   Mentions: 1     Fields:    Translation:Humans
    16. Illuminating Neural Circuits: From Molecules to MRI. J Neurosci. 2017 11 08; 37(45):10817-10825. Lee JH, Kreitzer AC, Singer AC, Schiff ND. PMID: 29118210; PMCID: PMC5678014.
      View in: PubMed   Mentions: 9     Fields:    Translation:HumansAnimals
    17. 500 Fronto-Striatal Modulation of Anxiety-Like Behaviors. Biological Psychiatry. 2017 May 1; 81(10):s203. Gunaydin GL, Nelson NA, Kreitzer KA. .
      View in: Publisher Site   Mentions:
    18. Neural circuitry for behavioural arrest. Philos Trans R Soc Lond B Biol Sci. 2017 Apr 19; 372(1718). Roseberry T, Kreitzer A. PMID: 28242731; PMCID: PMC5332856.
      View in: PubMed   Mentions: 17     Fields:    Translation:HumansAnimals
    19. Parkinsonism Driven by Antipsychotics Originates from Dopaminergic Control of Striatal Cholinergic Interneurons. Neuron. 2016 07 06; 91(1):67-78. Kharkwal G, Brami-Cherrier K, Lizardi-Ortiz JE, Nelson AB, Ramos M, Del Barrio D, Sulzer D, Kreitzer AC, Borrelli E. PMID: 27387649; PMCID: PMC4939839.
      View in: PubMed   Mentions: 46     Fields:    Translation:AnimalsCells
    20. Activation of Direct and Indirect Pathway Medium Spiny Neurons Drives Distinct Brain-wide Responses. Neuron. 2016 07 20; 91(2):412-24. Lee HJ, Weitz AJ, Bernal-Casas D, Duffy BA, Choy M, Kravitz AV, Kreitzer AC, Lee JH. PMID: 27373834; PMCID: PMC5528162.
      View in: PubMed   Mentions: 55     Fields:    Translation:AnimalsCells
    21. Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia. Cell. 2016 Jan 28; 164(3):526-37. Roseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC. PMID: 26824660; PMCID: PMC4733247.
      View in: PubMed   Mentions: 161     Fields:    Translation:AnimalsCells
    22. Pathway-Specific Remodeling of Thalamostriatal Synapses in Parkinsonian Mice. Neuron. 2016 Feb 17; 89(4):734-40. Parker PR, Lalive AL, Kreitzer AC. PMID: 26833136; PMCID: PMC4760843.
      View in: PubMed   Mentions: 58     Fields:    Translation:AnimalsCells
    23. Chapter 33 Investigating Basal Ganglia Function With Cell-Type-Specific Manipulations. Handbook of Basal Ganglia Structure and Function, Second Edition. 2016 Jan 1; 24:689-706. Kravitz KA, Devarakonda DK, Kreitzer KA. .
      View in: Publisher Site   Mentions:
    24. Cortico-Basal Ganglia Circuit Function in Psychiatric Disease. Annu Rev Physiol. 2016; 78:327-50. Gunaydin LA, Kreitzer AC. PMID: 26667072.
      View in: PubMed   Mentions: 66     Fields:    Translation:HumansAnimals
    25. Striatal cholinergic neurotransmission requires VGLUT3. J Neurosci. 2014 Jun 25; 34(26):8772-7. Nelson AB, Bussert TG, Kreitzer AC, Seal RP. PMID: 24966377; PMCID: PMC4069355.
      View in: PubMed   Mentions: 54     Fields:    Translation:AnimalsCells
    26. Striatal cholinergic interneurons Drive GABA release from dopamine terminals. Neuron. 2014 Apr 02; 82(1):63-70. Nelson AB, Hammack N, Yang CF, Shah NM, Seal RP, Kreitzer AC. PMID: 24613418; PMCID: PMC3976769.
      View in: PubMed   Mentions: 98     Fields:    Translation:AnimalsCells
    27. Reassessing models of basal ganglia function and dysfunction. Annu Rev Neurosci. 2014; 37:117-35. Nelson AB, Kreitzer AC. PMID: 25032493; PMCID: PMC4416475.
      View in: PubMed   Mentions: 135     Fields:    Translation:HumansAnimals
    28. Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci. 2013 Nov 20; 33(47):18531-9. Freeze BS, Kravitz AV, Hammack N, Berke JD, Kreitzer AC. PMID: 24259575; PMCID: PMC3834057.
      View in: PubMed   Mentions: 183     Fields:    Translation:AnimalsCells
    29. Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron. 2013 Jul 24; 79(2):347-60. Wall NR, De La Parra M, Callaway EM, Kreitzer AC. PMID: 23810541; PMCID: PMC3729794.
      View in: PubMed   Mentions: 240     Fields:    Translation:HumansAnimalsCells
    30. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat Neurosci. 2013 May; 16(5):613-21. Suberbielle E, Sanchez PE, Kravitz AV, Wang X, Ho K, Eilertson K, Devidze N, Kreitzer AC, Mucke L. PMID: 23525040; PMCID: PMC3637871.
      View in: PubMed   Mentions: 246     Fields:    Translation:HumansAnimalsCells
    31. Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res. 2013 May 20; 1511:21-32. Kravitz AV, Owen SF, Kreitzer AC. PMID: 23178332; PMCID: PMC3594574.
      View in: PubMed   Mentions: 55     Fields:    Translation:AnimalsCells
    32. Striatal microcircuitry and movement disorders. Trends Neurosci. 2012 Sep; 35(9):557-64. Gittis AH, Kreitzer AC. PMID: 22858522; PMCID: PMC3432144.
      View in: PubMed   Mentions: 96     Fields:    Translation:HumansAnimals
    33. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval. PLoS One. 2012; 7(7):e40555. Andrews-Zwilling Y, Gillespie AK, Kravitz AV, Nelson AB, Devidze N, Lo I, Yoon SY, Bien-Ly N, Ring K, Zwilling D, Potter GB, Rubenstein JL, Kreitzer AC, Huang Y. PMID: 22792368; PMCID: PMC3390383.
      View in: PubMed   Mentions: 60     Fields:    Translation:AnimalsCells
    34. A comparison of striatal-dependent behaviors in wild-type and hemizygous Drd1a and Drd2 BAC transgenic mice. J Neurosci. 2012 Jul 04; 32(27):9119-23. Nelson AB, Hang GB, Grueter BA, Pascoli V, Luscher C, Malenka RC, Kreitzer AC. PMID: 22764221; PMCID: PMC3420343.
      View in: PubMed   Mentions: 33     Fields:    Translation:AnimalsCells
    35. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval. Alzheimer's & Dementia. 2012 Jul 1; 8(4):s747. Andrews-Zwilling AY, Gillespie GA, Kravitz KA, Nelson NA, Devidze DN, Lo LI, Yoon YS, Bien-Ly BN, Ring RK, Zwilling ZD, Potter PG, Rubenstein RJ, Kreitzer KA, Huang HY. .
      View in: Publisher Site   Mentions:
    36. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012 Jul 06; 11(1):100-9. Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y. PMID: 22683203; PMCID: PMC3399516.
      View in: PubMed   Mentions: 274     Fields:    Translation:HumansAnimalsCells
    37. Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology (Bethesda). 2012 Jun; 27(3):167-77. Kravitz AV, Kreitzer AC. PMID: 22689792; PMCID: PMC3880226.
      View in: PubMed   Mentions: 107     Fields:    Translation:HumansAnimalsCells
    38. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci. 2012 Jun; 15(6):816-8. Kravitz AV, Tye LD, Kreitzer AC. PMID: 22544310; PMCID: PMC3410042.
      View in: PubMed   Mentions: 500     Fields:    Translation:AnimalsCells
    39. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell. 2012 Apr 27; 149(3):708-21. Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, Devidze N, Masliah E, Kreitzer AC, Mody I, Mucke L, Palop JJ. PMID: 22541439; PMCID: PMC3375906.
      View in: PubMed   Mentions: 565     Fields:    Translation:HumansAnimalsCells
    40. Dendritic architecture: form and function. Nat Neurosci. 2012 Mar 27; 15(4):503-5. Javier RM, Kreitzer AC. PMID: 22449957.
      View in: PubMed   Mentions: 2     Fields:    Translation:AnimalsCells
    41. Sonic hedgehog expression in corticofugal projection neurons directs cortical microcircuit formation. Neuron. 2012 Mar 22; 73(6):1116-26. Harwell CC, Parker PR, Gee SM, Okada A, McConnell SK, Kreitzer AC, Kriegstein AR. PMID: 22445340; PMCID: PMC3551478.
      View in: PubMed   Mentions: 64     Fields:    Translation:AnimalsCells
    42. RGS4 is required for dopaminergic control of striatal LTD and susceptibility to parkinsonian motor deficits. Neuron. 2012 Jan 26; 73(2):347-59. Lerner TN, Kreitzer AC. PMID: 22284188; PMCID: PMC3269032.
      View in: PubMed   Mentions: 102     Fields:    Translation:AnimalsCells
    43. Selective inhibition of striatal fast-spiking interneurons causes dyskinesias. J Neurosci. 2011 Nov 02; 31(44):15727-31. Gittis AH, Leventhal DK, Fensterheim BA, Pettibone JR, Berke JD, Kreitzer AC. PMID: 22049415; PMCID: PMC3226784.
      View in: PubMed   Mentions: 99     Fields:    Translation:AnimalsCells
    44. Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron. 2011 Sep 08; 71(5):858-68. Gittis AH, Hang GB, LaDow ES, Shoenfeld LR, Atallah BV, Finkbeiner S, Kreitzer AC. PMID: 21903079; PMCID: PMC3170520.
      View in: PubMed   Mentions: 90     Fields:    Translation:AnimalsCells
    45. Investigating striatal function through cell-type-specific manipulations. Neuroscience. 2011 Dec 15; 198:19-26. Kreitzer AC, Berke JD. PMID: 21867745; PMCID: PMC3221791.
      View in: PubMed   Mentions: 29     Fields:    Translation:AnimalsCells
    46. Cholinergic interneurons mediate fast VGluT3-dependent glutamatergic transmission in the striatum. PLoS One. 2011 Apr 22; 6(4):e19155. Higley MJ, Gittis AH, Oldenburg IA, Balthasar N, Seal RP, Edwards RH, Lowell BB, Kreitzer AC, Sabatini BL. PMID: 21544206; PMCID: PMC3081336.
      View in: PubMed   Mentions: 100     Fields:    Translation:AnimalsCells
    47. Optogenetic manipulation of neural circuitry in vivo. Curr Opin Neurobiol. 2011 Jun; 21(3):433-9. Kravitz AV, Kreitzer AC. PMID: 21420852; PMCID: PMC3130851.
      View in: PubMed   Mentions: 31     Fields:    Translation:HumansAnimalsCells
    48. Neuromodulatory control of striatal plasticity and behavior. Curr Opin Neurobiol. 2011 Apr; 21(2):322-7. Lerner TN, Kreitzer AC. PMID: 21333525; PMCID: PMC3092792.
      View in: PubMed   Mentions: 37     Fields:    Translation:HumansAnimals
    49. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010 Jul 29; 466(7306):622-6. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC. PMID: 20613723; PMCID: PMC3552484.
      View in: PubMed   Mentions: 854     Fields:    Translation:AnimalsCells
    50. Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci. 2010 Feb 10; 30(6):2223-34. Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC. PMID: 20147549; PMCID: PMC2836801.
      View in: PubMed   Mentions: 204     Fields:    Translation:AnimalsCells
    51. Endocannabinoid signaling mediates psychomotor activation by adenosine A2A antagonists. J Neurosci. 2010 Feb 10; 30(6):2160-4. Lerner TN, Horne EA, Stella N, Kreitzer AC. PMID: 20147543; PMCID: PMC2830732.
      View in: PubMed   Mentions: 38     Fields:    Translation:AnimalsCells
    52. Physiology and pharmacology of striatal neurons. Annu Rev Neurosci. 2009; 32:127-47. Kreitzer AC. PMID: 19400717.
      View in: PubMed   Mentions: 254     Fields:    Translation:HumansAnimalsCells
    53. Synaptic Plasticity: Short-Term Mechanisms. Encyclopedia of Neuroscience. 2009 Jan 1; (Journal of Cell Biology1702005):773-778. Dittman DJ, Kreitzer KA. .
      View in: Publisher Site   Mentions:
    54. Striatal plasticity and basal ganglia circuit function. Neuron. 2008 Nov 26; 60(4):543-54. Kreitzer AC, Malenka RC. PMID: 19038213; PMCID: PMC2724179.
      View in: PubMed   Mentions: 457     Fields:    Translation:HumansAnimalsCells
    55. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron. 2007 Sep 06; 55(5):697-711. Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, Finkbeiner S, Noebels JL, Mucke L. PMID: 17785178; PMCID: PMC8055171.
      View in: PubMed   Mentions: 792     Fields:    Translation:HumansAnimalsCells
    56. Mechanisms for synapse specificity during striatal long-term depression. J Neurosci. 2007 May 09; 27(19):5260-4. Singla S, Kreitzer AC, Malenka RC. PMID: 17494712; PMCID: PMC6672378.
      View in: PubMed   Mentions: 43     Fields:    Translation:AnimalsCells
    57. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature. 2007 Feb 08; 445(7128):643-7. Kreitzer AC, Malenka RC. PMID: 17287809.
      View in: PubMed   Mentions: 367     Fields:    Translation:AnimalsCells
    58. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J Neurosci. 2005 Nov 09; 25(45):10537-45. Kreitzer AC, Malenka RC. PMID: 16280591; PMCID: PMC6725809.
      View in: PubMed   Mentions: 176     Fields:    Translation:AnimalsCells
    59. Neurotransmission: emerging roles of endocannabinoids. Curr Biol. 2005 Jul 26; 15(14):R549-51. Kreitzer AC. PMID: 16051162.
      View in: PubMed   Mentions: 11     Fields:    Translation:HumansCells
    60. Interaction of postsynaptic receptor saturation with presynaptic mechanisms produces a reliable synapse. Neuron. 2002 Dec 19; 36(6):1115-26. Foster KA, Kreitzer AC, Regehr WG. PMID: 12495626.
      View in: PubMed   Mentions: 58     Fields:    Translation:AnimalsCells
    61. Retrograde signaling by endocannabinoids. Curr Opin Neurobiol. 2002 Jun; 12(3):324-30. Kreitzer AC, Regehr WG. PMID: 12049940.
      View in: PubMed   Mentions: 69     Fields:    Translation:HumansAnimalsCells
    62. Inhibition of interneuron firing extends the spread of endocannabinoid signaling in the cerebellum. Neuron. 2002 May 30; 34(5):787-96. Kreitzer AC, Carter AG, Regehr WG. PMID: 12062024.
      View in: PubMed   Mentions: 72     Fields:    Translation:AnimalsCells
    63. Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids. J Neurosci. 2001 Oct 15; 21(20):RC174. Kreitzer AC, Regehr WG. PMID: 11588204; PMCID: PMC6763870.
      View in: PubMed   Mentions: 135     Fields:    Translation:AnimalsCells
    64. Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron. 2001 Mar; 29(3):717-27. Kreitzer AC, Regehr WG. PMID: 11301030.
      View in: PubMed   Mentions: 361     Fields:    Translation:AnimalsCells
    65. Monitoring presynaptic calcium dynamics in projection fibers by in vivo loading of a novel calcium indicator. Neuron. 2000 Jul; 27(1):25-32. Kreitzer AC, Gee KR, Archer EA, Regehr WG. PMID: 10939328.
      View in: PubMed   Mentions: 35     Fields:    Translation:AnimalsCells
    66. Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci. 2000 Feb 15; 20(4):1374-85. Dittman JS, Kreitzer AC, Regehr WG. PMID: 10662828; PMCID: PMC6772383.
      View in: PubMed   Mentions: 224     Fields:    Translation:AnimalsCells
    67. Modulation of transmission during trains at a cerebellar synapse. J Neurosci. 2000 Feb 15; 20(4):1348-57. Kreitzer AC, Regehr WG. PMID: 10662825; PMCID: PMC6772360.
      View in: PubMed   Mentions: 42     Fields:    Translation:AnimalsCells
    68. Multiple levels of schematization: A study in the conceptualization of space. Cognitive Linguistics. 1997 Jan 1; 8(4):291-326. KREITZER KA. .
      View in: Publisher Site   Mentions:
    Anatol's Networks
    Concepts (316)
    Derived automatically from this person's publications.
    _
    Co-Authors (18)
    People in Profiles who have published with this person.
    _
    Similar People (60)
    People who share similar concepts with this person.
    _
    Same Department
    Search Department
    _