Andrea Hasenstaub, PhD

Title(s)Associate Professor, Otolaryngology
SchoolSchool of Medicine
Address675 Nelson Rising Lane, #514B
San Francisco CA 94158
vCardDownload vCard

    Collapse Overview 
    Collapse Overview
    Andrea Hasenstaub, PhD, is an Associate Professor in the Coleman Memorial Laboratories in the Department of Otolaryngology-Head and Neck Surgery (OHNS) at the University of California, San Francisco. She received her BS in Mathematics and Engineering at the California Institute of Technology in Pasadena, California; a M.Phil. in Biological Anthropology from Cambridge University, England; and a PhD in Neurobiology at Yale University in New Haven, Connecticut, followed by a fellowship at the Salk Institute in La Jolla, California.

    Dr. Hasenstaub’s research is focused on understanding the genetic, cellular, and network operation of specific cell types in the mouse and human auditory cortex. One line of research focuses on inhibitory microcircuitry in normal and diseased brains. Within the cortex, diverse types of local circuit inhibitory neuron play vital roles in regulating and timing activity, and are key mediators of long-term developmental plasticity. Central auditory processing disorders, such as hyperacusis or tinnitus, may result in part from failure of cortical inhibitory networks to properly control the strength, timing, or plasticity of excitatory activity. These neurons' dysfunction is also implicated in broader neurodevelopmental disorders including schizophrenia, autism, epilepsy, and bipolar disorder. Treatments for these common and devastating diseases will require both a conceptual understanding of cortical interneurons' circuit functions, and a mechanistic understanding of their interactions.

    Exciting advances in optical and genetic technology now bring this understanding within reach, by allowing us to systematically measure and manipulate properties of specific cell populations to answer basic questions about their function. Under what conditions are different kind of cortical neuron engaged? What computations do different types of neurons enable? How does each type's activation affect input integration in its targets? How can long-range or neuromodulatory inputs dynamically regulate these interactions, and how does this match moment-to-moment changes in cognitive or behavioral requirements? And what can we infer about design principles common to all neural systems, by studying the biophysical strategies interneurons adopt to fill these circuit roles?

    A second line of research focuses on electrophysiological and genetic studies of human cerebral cortex. The majority of our information about cortical microcircuitry has been derived from studies in model systems, particularly mice, rats, ferrets, and cats. These studies have provided fundamental insight into the many aspects of cortical organization which are conserved across species. However, human neocortex differs from that of model systems in numerous ways including the presence of additional neuron types, specializations in conserved neuron types, altered patterns of local and long-range connections, and the presence of additional cytoarchitectonic areas. These evolutionarily recent specializations underlie the differences in cognitive capacity in humans compared to other species. By studying temporal and frontal cortex acutely resected from human surgical patients, we gain direct access to the cellular mechanisms of human brain function and disease, including the numerous human-specific aspects of cortical organization which cannot be directly studied in model systems.

    Our overall goal is to identify the conditions under which different kinds of cortical neuron are engaged, understand what computations they enable cortical networks to perform, and establish the biophysical and circuit mechanisms by which they allow these computations to occur. We hope that this will guide us in developing a low-level mechanistic understanding of how their plasticity in aging, hearing loss, and other types of brain injury underlies the functional losses observed in these conditions.

    Auditory physiology; central auditory processing

    In vivo and in vitro recordings, mouse neurophysiology, human neurophysiology

    Professional interests:
    Hearing; auditory cortex; thalamus; cross-modal and modulatory influences; cell type specificity; comparative studies

    • BS: California Institute of Technology, Mathematics and Engineering
    • M. Phil.: Cambridge University, Biological Anthropology
    • MS and PhD: Yale University, Neurobiology

    Collapse Research 
    Collapse Research Activities and Funding
    Cortical circuitry supporting flexible audiovisual interactions and behaviors
    NIH R01NS116598Sep 30, 2020 - Aug 31, 2023
    Role: Principal Investigator
    Clustered protocadherin regulation of cortical interneuron survival circuit assembly and plasticity
    NIH R01MH122478Sep 17, 2020 - Aug 31, 2025
    Role: Co-Principal Investigator
    Interneuron Precursors and the induction of cortical plasticity
    NIH R01EY025174Dec 2, 2014 - Sep 29, 2020
    Role: Co-Principal Investigator
    Dynamic regulation of auditory context processing by cortical inhibition
    NIH R01DC014101Jun 1, 2014 - May 31, 2020
    Role: Principal Investigator

    Collapse ORNG Applications 
    Collapse Academic Senate

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Basic Properties of Coordinated Neuronal Ensembles in the Auditory Thalamus. J Neurosci. 2024 Apr 01. Hu C, Hasenstaub AR, Schreiner CE. PMID: 38561224.
      View in: PubMed   Mentions:    Fields:    
    2. The clustered gamma protocadherin PcdhγC4 isoform regulates cortical interneuron programmed cell death in the mouse cortex. Proc Natl Acad Sci U S A. 2024 Feb 06; 121(6):e2313596120. Leon WRM, Steffen DM, Dale-Huang FR, Rakela B, Breevoort A, Romero-Rodriguez R, Hasenstaub AR, Stryker MP, Weiner JA, Alvarez-Buylla A. PMID: 38285948; PMCID: PMC10861877.
      View in: PubMed   Mentions:    Fields:    Translation:HumansAnimalsCells
    3. The h-current controls cortical recurrent network activity through modulation of dendrosomatic communication. bioRxiv. 2023 Jul 13. Shu Y, Hasenstaub A, McCormick DA. PMID: 37502942; PMCID: PMC10370005.
      View in: PubMed   Mentions:
    4. On the Role of Theory and Modeling in Neuroscience. J Neurosci. 2023 02 15; 43(7):1074-1088. Levenstein D, Alvarez VA, Amarasingham A, Azab H, Chen ZS, Gerkin RC, Hasenstaub A, Iyer R, Jolivet RB, Marzen S, Monaco JD, Prinz AA, Quraishi S, Santamaria F, Shivkumar S, Singh MF, Traub R, Nadim F, Rotstein HG, Redish AD. PMID: 36796842; PMCID: PMC9962842.
      View in: PubMed   Mentions: 8     Fields:    
    5. The Clustered Gamma Protocadherin Pcdhγc4 Isoform Regulates Cortical Interneuron Programmed Cell Death in the Mouse Cortex. bioRxiv. 2023 Feb 06. Leon WRM, Steffen DM, Dale-Huang F, Rakela B, Breevoort A, Romero-Rodriguez R, Hasenstaub AR, Stryker MP, Weiner JA, Alvarez-Buylla A. PMID: 36778455; PMCID: PMC9915683.
      View in: PubMed   Mentions:
    6. Offset Responses in the Auditory Cortex Show Unique History Dependence. J Neurosci. 2022 Sep 28; 42(39):7370-7385. Olsen T, Hasenstaub AR. PMID: 35999053; PMCID: PMC9525174.
      View in: PubMed   Mentions: 1     Fields:    
    7. Audiovisual task switching rapidly modulates sound encoding in mouse auditory cortex. Elife. 2022 08 18; 11. Morrill RJ, Bigelow J, DeKloe J, Hasenstaub AR. PMID: 35980027; PMCID: PMC9427107.
      View in: PubMed   Mentions: 2     Fields:    Translation:Animals
    8. Visual modulation of firing and spectrotemporal receptive fields in mouse auditory cortex. Curr Res Neurobiol. 2022; 3:100040. Bigelow J, Morrill RJ, Olsen T, Hasenstaub AR. PMID: 36518337; PMCID: PMC9743056.
      View in: PubMed   Mentions: 1  
    9. Nests of dividing neuroblasts sustain interneuron production for the developing human brain. Science. 2022 01 28; 375(6579):eabk2346. Paredes MF, Mora C, Flores-Ramirez Q, Cebrian-Silla A, Del Dosso A, Larimer P, Chen J, Kang G, Gonzalez Granero S, Garcia E, Chu J, Delgado R, Cotter JA, Tang V, Spatazza J, Obernier K, Ferrer Lozano J, Vento M, Scott J, Studholme C, Nowakowski TJ, Kriegstein AR, Oldham MC, Hasenstaub A, Garcia-Verdugo JM, Alvarez-Buylla A, Huang EJ. PMID: 35084970; PMCID: PMC8887556.
      View in: PubMed   Mentions: 7     Fields:    Translation:HumansAnimalsCells
    10. Clustered gamma-protocadherins regulate cortical interneuron programmed cell death. Elife. 2020 07 07; 9. Mancia Leon WR, Spatazza J, Rakela B, Chatterjee A, Pande V, Maniatis T, Hasenstaub AR, Stryker MP, Alvarez-Buylla A. PMID: 32633719; PMCID: PMC7373431.
      View in: PubMed   Mentions: 20     Fields:    Translation:AnimalsCells
    11. Movement and VIP Interneuron Activation Differentially Modulate Encoding in Mouse Auditory Cortex. eNeuro. 2019 Sep/Oct; 6(5). Bigelow J, Morrill RJ, Dekloe J, Hasenstaub AR. PMID: 31481397; PMCID: PMC6751373.
      View in: PubMed   Mentions: 18     Fields:    Translation:AnimalsCells
    12. Transplanted Cells Are Essential for the Induction But Not the Expression of Cortical Plasticity. J Neurosci. 2019 09 18; 39(38):7529-7538. Hoseini MS, Rakela B, Flores-Ramirez Q, Hasenstaub AR, Alvarez-Buylla A, Stryker MP. PMID: 31391263; PMCID: PMC6750933.
      View in: PubMed   Mentions: 6     Fields:    Translation:AnimalsCells
    13. Vesicular GABA Transporter Is Necessary for Transplant-Induced Critical Period Plasticity in Mouse Visual Cortex. J Neurosci. 2019 04 03; 39(14):2635-2648. Priya R, Rakela B, Kaneko M, Spatazza J, Larimer P, Hoseini MS, Hasenstaub AR, Alvarez-Buylla A, Stryker MP. PMID: 30705101; PMCID: PMC6445995.
      View in: PubMed   Mentions: 8     Fields:    Translation:AnimalsCells
    14. Secretagogin is Expressed by Developing Neocortical GABAergic Neurons in Humans but not Mice and Increases Neurite Arbor Size and Complexity. Cereb Cortex. 2018 06 01; 28(6):1946-1958. Raju CS, Spatazza J, Stanco A, Larimer P, Sorrells SF, Kelley KW, Nicholas CR, Paredes MF, Lui JH, Hasenstaub AR, Kriegstein AR, Alvarez-Buylla A, Rubenstein JL, Oldham MC. PMID: 28449024; PMCID: PMC6019052.
      View in: PubMed   Mentions: 22     Fields:    Translation:HumansAnimalsCells
    15. Visual Information Present in Infragranular Layers of Mouse Auditory Cortex. J Neurosci. 2018 03 14; 38(11):2854-2862. Morrill RJ, Hasenstaub AR. PMID: 29440554; PMCID: PMC5852663.
      View in: PubMed   Mentions: 36     Fields:    Translation:Animals
    16. Amplitude modulation coding in awake mice and squirrel monkeys. J Neurophysiol. 2018 05 01; 119(5):1753-1766. Hoglen NEG, Larimer P, Phillips EAK, Malone BJ, Hasenstaub AR. PMID: 29364073; PMCID: PMC6008086.
      View in: PubMed   Mentions: 11     Fields:    Translation:AnimalsCells
    17. Cortical Interneurons Differentially Regulate the Effects of Acoustic Context. Cell Rep. 2017 07 25; 20(4):771-778. Phillips EAK, Schreiner CE, Hasenstaub AR. PMID: 28746863; PMCID: PMC5714710.
      View in: PubMed   Mentions: 30     Fields:    Translation:AnimalsCells
    18. Diverse effects of stimulus history in waking mouse auditory cortex. J Neurophysiol. 2017 08 01; 118(2):1376-1393. Phillips EAK, Schreiner CE, Hasenstaub AR. PMID: 28566458; PMCID: PMC5558031.
      View in: PubMed   Mentions: 11     Fields:    Translation:Animals
    19. Development and long-term integration of MGE-lineage cortical interneurons in the heterochronic environment. J Neurophysiol. 2017 07 01; 118(1):131-139. Larimer P, Spatazza J, Stryker MP, Alvarez-Buylla A, Hasenstaub AR. PMID: 28356470; PMCID: PMC5494369.
      View in: PubMed   Mentions: 7     Fields:    Translation:AnimalsCells
    20. Asymmetric effects of activating and inactivating cortical interneurons. Elife. 2016 10 10; 5. Phillips EA, Hasenstaub AR. PMID: 27719761; PMCID: PMC5123863.
      View in: PubMed   Mentions: 67     Fields:    Translation:AnimalsCells
    21. Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity. Cell Rep. 2016 08 02; 16(5):1391-1404. Larimer P, Spatazza J, Espinosa JS, Tang Y, Kaneko M, Hasenstaub AR, Stryker MP, Alvarez-Buylla A. PMID: 27425623; PMCID: PMC5047519.
      View in: PubMed   Mentions: 17     Fields:    Translation:AnimalsCells
    22. Inhibitory Actions Unified by Network Integration. Neuron. 2015 Sep 23; 87(6):1181-1192. Seybold BA, Phillips EAK, Schreiner CE, Hasenstaub AR. PMID: 26402602; PMCID: PMC4635400.
      View in: PubMed   Mentions: 49     Fields:    Translation:AnimalsCells
    23. Strategies for optical control and simultaneous electrical readout of extended cortical circuits. J Neurosci Methods. 2015 Dec 30; 256:220-31. Ledochowitsch P, Yazdan-Shahmorad A, Bouchard KE, Diaz-Botia C, Hanson TL, He JW, Seybold BA, Olivero E, Phillips EA, Blanche TJ, Schreiner CE, Hasenstaub A, Chang EF, Sabes PN, Maharbiz MM. PMID: 26296286; PMCID: PMC6284522.
      View in: PubMed   Mentions: 22     Fields:    Translation:AnimalsCells
    24. Cell Type-Specific Control of Spike Timing by Gamma-Band Oscillatory Inhibition. Cereb Cortex. 2016 Feb; 26(2):797-806. Hasenstaub A, Otte S, Callaway E. PMID: 25778344; PMCID: PMC5006129.
      View in: PubMed   Mentions: 11     Fields:    Translation:Animals
    25. Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1. J Neurosci. 2013 Jul 03; 33(27):11145-54. Nienborg H, Hasenstaub A, Nauhaus I, Taniguchi H, Huang ZJ, Callaway EM. PMID: 23825418; PMCID: PMC3718383.
      View in: PubMed   Mentions: 47     Fields:    Translation:AnimalsCells
    26. Paint it black (or red, or green): optical and genetic tools illuminate inhibitory contributions to cortical circuit function. Neuron. 2010 Sep 09; 67(5):681-4. Hasenstaub AR, Callaway EM. PMID: 20826299.
      View in: PubMed   Mentions: 5     Fields:    
    27. Metabolic cost as a unifying principle governing neuronal biophysics. Proc Natl Acad Sci U S A. 2010 Jul 06; 107(27):12329-34. Hasenstaub A, Otte S, Callaway E, Sejnowski TJ. PMID: 20616090; PMCID: PMC2901447.
      View in: PubMed   Mentions: 107     Fields:    Translation:AnimalsCells
    28. Cell type-specific control of neuronal responsiveness by gamma-band oscillatory inhibition. J Neurosci. 2010 Feb 10; 30(6):2150-9. Otte S, Hasenstaub A, Callaway EM. PMID: 20147542; PMCID: PMC2824444.
      View in: PubMed   Mentions: 28     Fields:    Translation:AnimalsCells
    29. State changes rapidly modulate cortical neuronal responsiveness. J Neurosci. 2007 Sep 05; 27(36):9607-22. Hasenstaub A, Sachdev RN, McCormick DA. PMID: 17804621; PMCID: PMC6672966.
      View in: PubMed   Mentions: 114     Fields:    Translation:AnimalsCells
    30. Enhancement of visual responsiveness by spontaneous local network activity in vivo. J Neurophysiol. 2007 Jun; 97(6):4186-202. Haider B, Duque A, Hasenstaub AR, Yu Y, McCormick DA. PMID: 17409168.
      View in: PubMed   Mentions: 78     Fields:    Translation:AnimalsCells
    31. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci. 2006 Apr 26; 26(17):4535-45. Haider B, Duque A, Hasenstaub AR, McCormick DA. PMID: 16641233; PMCID: PMC6674060.
      View in: PubMed   Mentions: 462     Fields:    Translation:AnimalsCells
    32. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature. 2006 Jun 08; 441(7094):761-5. Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA. PMID: 16625207.
      View in: PubMed   Mentions: 211     Fields:    Translation:AnimalsCells
    33. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron. 2005 Aug 04; 47(3):423-35. Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA. PMID: 16055065.
      View in: PubMed   Mentions: 310     Fields:    Translation:AnimalsCells
    34. Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J Neurosci. 2003 Nov 12; 23(32):10388-401. Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA. PMID: 14614098; PMCID: PMC6741011.
      View in: PubMed   Mentions: 133     Fields:    Translation:AnimalsCells
    35. Persistent cortical activity: mechanisms of generation and effects on neuronal excitability. Cereb Cortex. 2003 Nov; 13(11):1219-31. McCormick DA, Shu Y, Hasenstaub A, Sanchez-Vives M, Badoual M, Bal T. PMID: 14576213.
      View in: PubMed   Mentions: 87     Fields:    Translation:AnimalsCells
    36. Turning on and off recurrent balanced cortical activity. Nature. 2003 May 15; 423(6937):288-93. Shu Y, Hasenstaub A, McCormick DA. PMID: 12748642.
      View in: PubMed   Mentions: 451     Fields:    Translation:AnimalsCells
    37. Brains, maturation times, and parenting. Neurobiol Aging. 1999 Jul-Aug; 20(4):447-54. Allman J, Hasenstaub A. PMID: 10604439.
      View in: PubMed   Mentions: 7     Fields:    Translation:HumansAnimals
    38. Parenting and survival in anthropoid primates: caretakers live longer. Proc Natl Acad Sci U S A. 1998 Jun 09; 95(12):6866-9. Allman J, Rosin A, Kumar R, Hasenstaub A. PMID: 9618504; PMCID: PMC22663.
      View in: PubMed   Mentions: 20     Fields:    Translation:Animals
    Andrea's Networks
    Concepts (129)
    Derived automatically from this person's publications.
    Co-Authors (20)
    People in Profiles who have published with this person.
    Similar People (60)
    People who share similar concepts with this person.
    Same Department
    Search Department