Helen Willsey, PhD

Title(s)Assistant Professor, Psychiatry
SchoolSchool of Medicine
ORCID ORCID Icon0000-0001-8404-3291 Additional info
vCardDownload vCard
    Other Positions
    Title(s)UCSF Weill Institute for Neurosciences

    Collapse Biography 
    Collapse Education and Training
    Duke UniversityBS2009Biology
    Yale UniversityPhD2015Genetics
    University of California, BerkeleyPostdoc2016Xenopus Methods
    University of California, San FranciscoPostdoc2021Developmental Neuroscience
    Collapse Awards and Honors
    Coalition to Cure CHD22022Early Stage Investigator Award
    Chan Zuckerberg Biohub2022Chan Zuckerberg Biohub Investigator Award
    International Society for Autism Research2021Early Stage Investigator Award
    International Xenopus Meeting2021John Gurdon Outstanding Speaker Award
    UCSF2020Dean’s Award for Excellence in Mentoring
    UCSF2020Psychiatry Department Trainee Research Award
    UC Berkeley20161st Place, Postdoc Poster, GGD Retreat
    International Xenopus Meeting20161st Place, Postdoc Poster
    Yale University2015Carolyn Slayman Outstanding Genetics Thesis Prize
    CSHL, Xenopus Course20151st Place, Image Competition
    Yale University2013Best Research in Progress Seminar, Genetics Department
    Yale University2011Best Poster Award, Genetics Department Retreat
    Duke University2009Edward C. Horn Memorial Prize for Excellence in Biology
    Duke University2009Summa cum laude
    Duke University2009Phi Beta Kappa Honor Society
    SYNGAP Research Fund2023Pilot Grant Award
    SYNGAP Research Fund2023Pilot Grant Award

    Collapse Overview 
    Collapse Overview
    The Willsey Lab uses the powerful Xenopus tropicalis (diploid frog) model to translate success in psychiatric disorder genetics into actionable mechanisms of risk and resilience. Our work to date has focused on high-confidence, large-effect risk genes for Autism Spectrum Disorders (ASD), where we have identified a convergent phenotype during forebrain neurogenesis. Specifically, we created half-mutant animals (divided by the midline) by CRISPR/Cas9 targeted injections and observed defects in neural progenitor maturation for the top 10 ASD risk genes. By drug screening, we identified estrogen signaling as a potential resilience factor for multiple different genes. Going forward, we are focusing on how these risk genes affect neurogenesis, how estrogen signaling interacts, and expanding this experimental platform to begin work on other disorders with large-effect risk genes, including Schizophrenia, Tourette Disorder, ADHD, and OCD.
    Collapse Websites

    Collapse Featured Content 
    Collapse Twitter
    Collapse Featured Videos

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. A foundational atlas of autism protein interactions reveals molecular convergence. bioRxiv. 2024 Feb 08. Wang B, Vartak R, Zaltsman Y, Naing ZZC, Hennick KM, Polacco BJ, Bashir A, Eckhardt M, Bouhaddou M, Xu J, Sun N, Lasser MC, Zhou Y, McKetney J, Guiley KZ, Chan U, Kaye JA, Chadha N, Cakir M, Gordon M, Khare P, Drake S, Drury V, Burke DF, Gonzalez S, Alkhairy S, Thomas R, Lam S, Morris M, Bader E, Seyler M, Baum T, Krasnoff R, Wang S, Pham P, Arbalaez J, Pratt D, Chag S, Mahmood N, Rolland T, Bourgeron T, Finkbeiner S, Swaney DL, Bandyopadhay S, Ideker T, Beltrao P, Willsey HR, Obernier K, Nowakowski TJ, Hüttenhain R, State MW, Willsey AJ, Krogan NJ. PMID: 38076945; PMCID: PMC10705567.
      View in: PubMed   Mentions:
    2. Autism genes converge on microtubule biology and RNA-binding proteins during excitatory neurogenesis. bioRxiv. 2024 Jan 02. Sun N, Teyssier N, Wang B, Drake S, Seyler M, Zaltsman Y, Everitt A, Teerikorpi N, Willsey HR, Goodarzi H, Tian R, Kampmann M, Willsey AJ. PMID: 38187634; PMCID: PMC10769323.
      View in: PubMed   Mentions:
    3. Pleiotropy of autism-associated chromatin regulators. Development. 2023 07 15; 150(14). Lasser M, Sun N, Xu Y, Wang S, Drake S, Law K, Gonzalez S, Wang B, Drury V, Castillo O, Zaltsman Y, Dea J, Bader E, McCluskey KE, State MW, Willsey AJ, Willsey HR. PMID: 37366052; PMCID: PMC10399978.
      View in: PubMed   Mentions: 1     Fields:    Translation:HumansCells
    4. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci. 2022 06; 23(6):323-341. Willsey HR, Willsey AJ, Wang B, State MW. PMID: 35440779; PMCID: PMC10693992.
      View in: PubMed   Mentions: 44     Fields:    Translation:HumansCells
    5. Modeling Human Genetic Disorders with CRISPR Technologies in Xenopus. Cold Spring Harb Protoc. 2022 03 01; 2022(3). Willsey HR, Guille M, Grainger RM. PMID: 34531330.
      View in: PubMed   Mentions: 1     Fields:    Translation:HumansAnimals
    6. Picroscope: low-cost system for simultaneous longitudinal biological imaging. Commun Biol. 2021 11 04; 4(1):1261. Ly VT, Baudin PV, Pansodtee P, Jung EA, Voitiuk K, Rosen YM, Willsey HR, Mantalas GL, Seiler ST, Selberg JA, Cordero SA, Ross JM, Rolandi M, Pollen AA, Nowakowski TJ, Haussler D, Mostajo-Radji MA, Salama SR, Teodorescu M. PMID: 34737378; PMCID: PMC8569150.
      View in: PubMed   Mentions: 8  Translation:Animals
    7. Deep learning is widely applicable to phenotyping embryonic development and disease. Development. 2021 11 01; 148(21). Naert T, Çiçek Ö, Ogar P, Bürgi M, Shaidani NI, Kaminski MM, Xu Y, Grand K, Vujanovic M, Prata D, Hildebrandt F, Brox T, Ronneberger O, Voigt FF, Helmchen F, Loffing J, Horb ME, Willsey HR, Lienkamp SS. PMID: 34739029; PMCID: PMC8602947.
      View in: PubMed   Mentions: 7     Fields:    Translation:Animals
    8. Whole-Mount RNA In Situ Hybridization and Immunofluorescence of Xenopus Embryos and Tadpoles. Cold Spring Harb Protoc. 2021 10 01; 2021(10). Willsey HR. PMID: 33827967; PMCID: PMC8487899.
      View in: PubMed   Mentions:    Fields:    Translation:Animals
    9. A convergent molecular network underlying autism and congenital heart disease. Cell Syst. 2021 11 17; 12(11):1094-1107.e6. Rosenthal SB, Willsey HR, Xu Y, Mei Y, Dea J, Wang S, Curtis C, Sempou E, Khokha MK, Chi NC, Willsey AJ, Fisch KM, Ideker T. PMID: 34411509; PMCID: PMC8602730.
      View in: PubMed   Mentions: 9     Fields:    Translation:Humans
    10. Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience. Neuron. 2021 03 03; 109(5):788-804.e8. Willsey HR, Exner CRT, Xu Y, Everitt A, Sun N, Wang B, Dea J, Schmunk G, Zaltsman Y, Teerikorpi N, Kim A, Anderson AS, Shin D, Seyler M, Nowakowski TJ, Harland RM, Willsey AJ, State MW. PMID: 33497602; PMCID: PMC8132462.
      View in: PubMed   Mentions: 24     Fields:    Translation:HumansAnimalsCells
    11. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis. 2021 02; 59(1-2):e23405. Exner CRT, Willsey HR. PMID: 33369095; PMCID: PMC8130472.
      View in: PubMed   Mentions: 12     Fields:    Translation:Animals
    12. In Xenopus ependymal cilia drive embryonic CSF circulation and brain development independently of cardiac pulsatile forces. Fluids Barriers CNS. 2020 Dec 11; 17(1):72. Dur AH, Tang T, Viviano S, Sekuri A, Willsey HR, Tagare HD, Kahle KT, Deniz E. PMID: 33308296; PMCID: PMC7731788.
      View in: PubMed   Mentions: 9     Fields:    Translation:AnimalsCells
    13. The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos. Development. 2020 06 22; 147(21). Willsey HR, Xu Y, Everitt A, Dea J, Exner CRT, Willsey AJ, State MW, Harland RM. PMID: 32467234; PMCID: PMC10755402.
      View in: PubMed   Mentions: 19     Fields:    Translation:AnimalsCells
    14. DYRK1A-related intellectual disability: a syndrome associated with congenital anomalies of the kidney and urinary tract. Genet Med. 2019 12; 21(12):2755-2764. Blackburn ATM, Bekheirnia N, Uma VC, Corkins ME, Xu Y, Rosenfeld JA, Bainbridge MN, Yang Y, Liu P, Madan-Khetarpal S, Delgado MR, Hudgins L, Krantz I, Rodriguez-Buritica D, Wheeler PG, Al-Gazali L, Mohamed Saeed Mohamed Al Shamsi A, Gomez-Ospina N, Chao HT, Mirzaa GM, Scheuerle AE, Kukolich MK, Scaglia F, Eng C, Willsey HR, Braun MC, Lamb DJ, Miller RK, Bekheirnia MR. PMID: 31263215; PMCID: PMC6895419.
      View in: PubMed   Mentions: 12     Fields:    Translation:HumansAnimals
    15. Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos. Dev Biol. 2018 10 15; 442(2):276-287. Willsey HR, Walentek P, Exner CRT, Xu Y, Lane AB, Harland RM, Heald R, Santama N. PMID: 30096282; PMCID: PMC6143417.
      View in: PubMed   Mentions: 16     Fields:    Translation:AnimalsCells
    16. The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell. 2018 07 26; 174(3):505-520. Willsey AJ, Morris MT, Wang S, Willsey HR, Sun N, Teerikorpi N, Baum TB, Cagney G, Bender KJ, Desai TA, Srivastava D, Davis GW, Doudna J, Chang E, Sohal V, Lowenstein DH, Li H, Agard D, Keiser MJ, Shoichet B, von Zastrow M, Mucke L, Finkbeiner S, Gan L, Sestan N, Ward ME, Huttenhain R, Nowakowski TJ, Bellen HJ, Frank LM, Khokha MK, Lifton RP, Kampmann M, Ideker T, State MW, Krogan NJ. PMID: 30053424; PMCID: PMC6247911.
      View in: PubMed   Mentions: 60     Fields:    Translation:Humans
    17. Localized JNK signaling regulates organ size during development. Elife. 2016 03 14; 5. Willsey HR, Zheng X, Carlos Pastor-Pareja J, Willsey AJ, Beachy PA, Xu T. PMID: 26974344; PMCID: PMC4848088.
      View in: PubMed   Mentions: 18     Fields:    Translation:AnimalsCells
    18. Gp93, the Drosophila GRP94 ortholog, is required for gut epithelial homeostasis and nutrient assimilation-coupled growth control. Dev Biol. 2010 Mar 15; 339(2):295-306. Maynard JC, Pham T, Zheng T, Jockheck-Clark A, Rankin HB, Newgard CB, Spana EP, Nicchitta CV. PMID: 20044986; PMCID: PMC2830396.
      View in: PubMed   Mentions: 30     Fields:    Translation:AnimalsCells
    Helen's Networks
    Concepts (96)
    Derived automatically from this person's publications.
    Co-Authors (36)
    People in Profiles who have published with this person.
    Similar People (60)
    People who share similar concepts with this person.
    Same Department
    Search Department