Loading...

Judith Hellman, MD

Title(s)Professor, Anesthesia
SchoolSchool of Medicine
Address513 Parnassus Ave, MSB
San Francisco CA 94117
Phone415-476-5950
vCardDownload vCard

    Collapse Biography 
    Collapse Education and Training
    Columbia UniversityM.D.1989School of Medicine
    University of California, San Francisco, CA2018Diversity, Equity, and Inclusion Champion Training

    Collapse Overview 
    Collapse Overview
    My research program is focused on basic and translational research on sepsis and other forms of inflammation-driven acute organ failure ("Inflammatory Critical Illness"). Sepsis and multiple organ failure are leading causes of death in the Intensive Care Unit. These processes result from a complex inflammatory response that is initiated through the innate immune system by interactions between host cells and microbes or endogenous host factors that are released during injury or cell death. The family of Toll-like receptors (TLRs) recognize different microbial components and endogenous host factors, and are critical in initiating inflammatory responses to infection. The Hellman Group studies TLR-dependent pathways expressed by macrophages as well as non-conventional inflammatory cells, including endothelial cells, in Inflammatory Critical Illness, focusing on their roles in coagulopathy, vascular permeability, neutrophil trafficking to organs, and organ injury and failure.

    Major Ongoing Projects:
    1. The role of cell-specific extracellular signal-regulated kinases (ERK1/2 and ERK5) in sepsis and inflammatory critical illness. We reported that extracellular signal-regulated kinase 5 (ERK5) mediates the TLR2-dependent activation of human endothelial cells and monocytes (Wilhelmsen et al, JBC 2012). Subsequently we found that ERK5 promotes endothelial activation by a broad range of microbial and host agonists, including LPS (TLR4), IL-1ß (IL1R), and TNFa (TNFR) (Wilhelmsen et al, Science Signaling 2015). Furthermore, we observed that treatment with ERK5 inhibitor reduces inflammation, coagulopathy, and mortality in LPS-treated mice, but conversely increases mortality and bacteremia in a cecal ligation and puncture model of sepsis. Finally, we made the intriguing observation in vitro that ERK1/2 activation reduces endothelial inflammation induced by LPS and TNFa, in contrast to its role in promoting leukocyte inflammation. We are now further exploring these observations, testing the basic hypotheses that ERK1/2 and ERK5 regulate TLR-dependent and TLR-independent activation of endothelial inflammatory pathways and contribute to endothelial dysfunction in septic shock and organ failure.
    2. The immunomodulatory role of the endocannabinoid system in inflammatory activation of endothelial cells and leukocytes: We recently discovered that the endocannabinoid N-arachidonoyl dopamine (NADA) can negatively regulate endothelial cell activation by a variety of inflammatory agonists. We hypothesize that the endothelial endocannabinoid system may represent a novel regulatory system to therapeutically manipulate in order to ameliorate the manifestations of a variety of inflammatory disorders, including sepsis. We plan to pursue these studies further by identifying other endocannabinoids that regulate EC inflammation, and determining the mechanism by which NADA exerts its effects in ECs. We will also investigate the role of NADA, and the other components of the endocannabinoid system, in vivo using mouse models of infectious and non-infectious inflammation.
    3. The role of TLR2 in bacterial sepsis and organ injury: My lab has been investigating the bacterial lipoproteins in the context of sepsis for over a decade. In our early studies we found that bacterial lipoprotein TLR2 agonists are shed by bacteria into human serum in vitro and into the blood of septic mice and rats in vivo. We have characterized the effects of bacterial lipoproteins on monocytes, macrophages, and endothelial cells, and have done extensive work on the effects of TLR2 activation on coagulation and permeability in vitro and in vivo. We have recently found that TLR2 participates, in a complex fashion, in Staph aureus invasion of organs in a bacteremia model. We are continuing to explore TLR2 pathways in gram-positive and gram-negative sepsis. The goals are to further delineate the downstream pathways leading to coagulopathy and organ failure, and identify potential therapeutic targets to mitigate these deleterious outcomes without negatively impacting bacterial clearance.
    4. The effects of TLR2 activation on the vascular endothelium, including on endothelial inflammatory responses, leucocyte trafficking, coagulation pathways and permeability: Endothelial cell (EC) activation, coagulopathy, and vascular leak contribute to sepsis-induced organ failure. We have found TLR2-dependent activation of endothelial inflammatory pathways, as well as pathways involved in coagulopathy and vascular leak in vitro and in vivo. Thus TLR2 pathways may be important in sepsis-induced coagulopathy and vascular leak. We have defined the roles of several MAPKs (p38, JNK, ERK1/2, ERK5) and of NF-?B in TLR2-dependent signaling to inflammation, and have newly identified ERK5 as a key mediator of TLR2-dependent signaling in endothelial cells and human monocytes. We are continuing to explore the role of these TLR2 signaling intermediaries in the development of coagulopathy and vascular leak in vitro.
    5. The effects of TLR2 activation on coagulation in vivo: We recently found that challenge with bacterial lipopeptides or Staph aureus bacteria TLR2-dependently modulates plasma levels of coagulation pathway factors and coagulation times, and that TLR2 activation increases fibrin deposition in the lungs of mice. We are exploring the mechanisms and functional consequences of these effects, and will expand studies to look at different aspects of coagulation in vivo.
    6. The role of microbial components and endothelial cells in sepsis-induced endothelial and organ dysfunction: We previously found that activation of TLR2 has physiological effects on the lung, including reduced blood arterial blood oxygenation and impaired lung vasoconstrictive responses to alveolar hypoxia. In the future we will further explore the functional significance of activation of TLR2 and other TLRs, in particular TLR4 and TLR9, in sepsis-induced organ failure.
    7. Cellular and molecular mechanisms of lung ischemia-reperfusion injury.

    Collapse Research 
    Collapse Research Activities and Funding
    Neuro-immune mechanisms of minor cannabinoids in inflammatory and neuropathic pain
    NIH/NCCIH R01AT010757Sep 15, 2019 - Aug 31, 2024
    Role: Principal Investigator
    Acyl-dopamines, the transient receptor potential vanilloid 1 (TRPV1) and the endocannabinoid systems in acute inflammation and sepsis
    NIH/NIGMS R01GM132379Sep 1, 2019 - Aug 31, 2020
    Role: Principal Investigator
    TLR2 in Sepsis-Induced Coagulopathy, Endothelial Leak, and Pulmonary Dysfunction
    NIH/NIAID R01AI058106Dec 1, 2003 - May 31, 2012
    Role: Principal Investigator
    BACTERIAL SURFACE PROTEINS: POTENTIAL TARGETS FOR SEPSIS
    NIH/NIAID K08AI001722Jun 1, 2000 - May 31, 2005
    Role: Principal Investigator
    Comprehensive Anesthesia Research Training
    NIH/NIGMS T32GM008440Jul 1, 1995 - Jun 30, 2022
    Role: Principal Investigator

    Collapse ORNG Applications 
    Collapse Featured Publications
    Collapse Websites

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. ERK1/2 has Divergent Roles in LPS-Induced Microvascular Endothelial Cell Cytokine Production and Permeability. Shock. 2020 Aug 20. Wong E, Xu F, Joffre J, Nguyen N, Wilhelmsen K, Hellman J. PMID: 32826812.
      View in: PubMed   Mentions:    Fields:    
    2. The Surviving Sepsis Campaign: Basic/Translational Science Research Priorities. Crit Care Med. 2020 Aug; 48(8):1217-1232. Deutschman CS, Hellman J, Ferrer Roca R, De Backer D, Coopersmith CM. PMID: 32697495.
      View in: PubMed   Mentions:    Fields:    
    3. Endothelial Responses in Sepsis. Am J Respir Crit Care Med. 2020 Aug 01; 202(3):361-370. Joffre J, Hellman J, Ince C, Ait-Oufella H. PMID: 32101446.
      View in: PubMed   Mentions:    Fields:    
    4. The surviving sepsis campaign: basic/translational science research priorities. Intensive Care Med Exp. 2020 Jul 17; 8(1):31. Deutschman CS, Hellman J, Roca RF, De Backer D, Coopersmith CM. PMID: 32676795.
      View in: PubMed   Mentions:
    5. Activation of CB1R Promotes Lipopolysaccharide-Induced IL-10 Secretion by Monocytic Myeloid-Derived Suppressive Cells and Reduces Acute Inflammation and Organ Injury. J Immunol. 2020 Jun 15; 204(12):3339-3350. Joffre J, Yeh CC, Wong E, Thete M, Xu F, Zlatanova I, Lloyd E, Kobzik L, Legrand M, Hellman J. PMID: 32385136.
      View in: PubMed   Mentions:    Fields:    
    6. Corrigendum: Elevated Gut Microbiome-Derived Propionate Levels Are Associated With Reduced Sterile Lung Inflammation and Bacterial Immunity in Mice. Front Microbiol. 2019; 10:518. Tian X, Hellman J, Horswill AR, Crosby HA, Francis KP, Prakash A. PMID: 30972040.
      View in: PubMed   Mentions:
    7. Elevated Gut Microbiome-Derived Propionate Levels Are Associated With Reduced Sterile Lung Inflammation and Bacterial Immunity in Mice. Front Microbiol. 2019; 10:159. Tian X, Hellman J, Horswill AR, Crosby HA, Francis KP, Prakash A. PMID: 30891007.
      View in: PubMed   Mentions:
    8. The Response to the Letter to the Editor Titled: "Is Triple Self-plagiarism "OK" If Only Made Transparent?" by Volker R Jacobs, MD, MBA. Shock. 2019 01; 51(1):140-141. Osuchowski MF, Hellman J, Huber-Lang M, Libert C, Remick DG, Thiemermann C, Zingarelli B. PMID: 30475325.
      View in: PubMed   Mentions:    Fields:    Translation:Animals
    9. Premise for Standardized Sepsis Models. Shock. 2019 01; 51(1):4-9. Remick DG, Ayala A, Chaudry IH, Coopersmith CM, Deutschman C, Hellman J, Moldawer L, Osuchowski MF. PMID: 29877959.
      View in: PubMed   Mentions: 5     Fields:    Translation:HumansAnimals
    10. Part III: Minimum Quality Threshold in Preclinical Sepsis Studies (MQTiPSS) for Fluid Resuscitation and Antimicrobial Therapy Endpoints. Shock. 2019 01; 51(1):33-43. Hellman J, Bahrami S, Boros M, Chaudry IH, Fritsch G, Gozdzik W, Inoue S, Radermacher P, Singer M, Osuchowski MF, Huber-Lang M. PMID: 29923896.
      View in: PubMed   Mentions: 7     Fields:    Translation:HumansAnimals
    11. NF-?B/MAPK activation underlies ACVR1-mediated inflammation in human heterotopic ossification. JCI Insight. 2018 11 15; 3(22). Barruet E, Morales BM, Cain CJ, Ton AN, Wentworth KL, Chan TV, Moody TA, Haks MC, Ottenhoff TH, Hellman J, Nakamura MC, Hsiao EC. PMID: 30429363.
      View in: PubMed   Mentions: 5     Fields:    Translation:HumansCells
    12. Correction to: Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS): an international expert consensus initiative for improvement of animal modeling in sepsis. Infection. 2018 10; 46(5):745-747. Osuchowski MF, Ayala A, Bahrami S, Bauer M, Boros M, Cavaillon JM, Chaudry IH, Coopersmith CM, Deutschman C, Drechsler S, Efron P, Frostell C, Fritsch G, Gozdzik W, Hellman J, Huber-Lang M, Inoue S, Knapp S, Kozlov AV, Libert C, Marshall JC, Moldawer LL, Radermacher P, Redl H, Remick DG, Singer M, Thiemermann C, Wang P, Wiersinga WJ, Xiao X, Zingarelli B. PMID: 30225655.
      View in: PubMed   Mentions: 1     Fields:    
    13. Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS): an international expert consensus initiative for improvement of animal modeling in sepsis. Infection. 2018 Oct; 46(5):687-691. Osuchowski MF, Ayala A, Bahrami S, Bauer M, Boros M, Cavaillon JM, Chaudry IH, Coopersmith CM, Deutschman C, Drechsler S, Efron P, Frostell C, Fritsch G, Gozdzik W, Hellman J, Huber-Lang M, Inoue S, Knapp S, Kozlov AV, Libert C, Marshall JC, Moldawer LL, Radermacher P, Redl H, Remick DG, Singer M, Thiemermann C, Wang P, Wiersinga WJ, Xiao X, Zingarelli B. PMID: 30105433.
      View in: PubMed   Mentions: 3     Fields:    
    14. Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS): An International Expert Consensus Initiative for Improvement of Animal Modeling in Sepsis. Shock. 2018 10; 50(4):377-380. Osuchowski MF, Ayala A, Bahrami S, Bauer M, Boros M, Cavaillon JM, Chaudry IH, Coopersmith CM, Deutschman CS, Drechsler S, Efron P, Frostell C, Fritsch G, Gozdzik W, Hellman J, Huber-Lang M, Inoue S, Knapp S, Kozlov AV, Libert C, Marshall JC, Moldawer LL, Radermacher P, Redl H, Remick DG, Singer M, Thiemermann C, Wang P, Wiersinga WJ, Xiao X, Zingarelli B. PMID: 30106875.
      View in: PubMed   Mentions: 19     Fields:    Translation:Animals
    15. Minimum quality threshold in pre-clinical sepsis studies (MQTiPSS): an international expert consensus initiative for improvement of animal modeling in sepsis. Intensive Care Med Exp. 2018 Aug 14; 6(1):26. Osuchowski MF, Ayala A, Bahrami S, Bauer M, Boros M, Cavaillon JM, Chaudry IH, Coopersmith CM, Deutschman C, Drechsler S, Efron P, Frostell C, Fritsch G, Gozdzik W, Hellman J, Huber-Lang M, Inoue S, Knapp S, Kozlov AV, Libert C, Marshall JC, Moldawer LL, Radermacher P, Redl H, Remick DG, Singer M, Thiemermann C, Wang P, Wiersinga WJ, Xiao X, Zingarelli B. PMID: 30112605.
      View in: PubMed   Mentions:
    16. Surviving Sepsis Campaign: Research Priorities for Sepsis and Septic Shock. Crit Care Med. 2018 08; 46(8):1334-1356. Coopersmith CM, De Backer D, Deutschman CS, Ferrer R, Lat I, Machado FR, Martin GS, Martin-Loeches I, Nunnally ME, Antonelli M, Evans LE, Hellman J, Jog S, Kesecioglu J, Levy MM, Rhodes A. PMID: 29957716.
      View in: PubMed   Mentions: 11     Fields:    Translation:Humans
    17. Surviving sepsis campaign: research priorities for sepsis and septic shock. Intensive Care Med. 2018 Sep; 44(9):1400-1426. Coopersmith CM, De Backer D, Deutschman CS, Ferrer R, Lat I, Machado FR, Martin GS, Martin-Loeches I, Nunnally ME, Antonelli M, Evans LE, Hellman J, Jog S, Kesecioglu J, Levy MM, Rhodes A. PMID: 29971592.
      View in: PubMed   Mentions: 18     Fields:    Translation:Humans
    18. NLRP3 Inflammasome Mediates Dormant Neutrophil Recruitment following Sterile Lung Injury and Protects against Subsequent Bacterial Pneumonia in Mice. Front Immunol. 2017; 8:1337. Tian X, Sun H, Casbon AJ, Lim E, Francis KP, Hellman J, Prakash A. PMID: 29163464.
      View in: PubMed   Mentions: 5     Fields:    
    19. N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1. J Immunol. 2017 08 15; 199(4):1465-1475. Lawton SK, Xu F, Tran A, Wong E, Prakash A, Schumacher M, Hellman J, Wilhelmsen K. PMID: 28701511.
      View in: PubMed   Mentions: 4     Fields:    Translation:Animals
    20. 20. Critical Care Medicine. 2016 Dec 1; 44(12):91. Samira Lawton, Kevin Wilhelmsen, Fengyun Xu, Alphonso Tran, Erika Wong, Judith Hellman. .
      View in: Publisher Site   Mentions:
    21. Contemporary views on inflammatory pain mechanisms: TRPing over innate and microglial pathways. F1000Res. 2016; 5. Guan Z, Hellman J, Schumacher M. PMID: 27781082.
      View in: PubMed   Mentions: 2     Fields:    
    22. Potentiation and tolerance of toll-like receptor priming in human endothelial cells. Transl Res. 2017 02; 180:53-67.e4. Koch SR, Lamb FS, Hellman J, Sherwood ER, Stark RJ. PMID: 27567430.
      View in: PubMed   Mentions: 3     Fields:    Translation:HumansCells
    23. Gut Microbiota-Induced Immunoglobulin G Controls Systemic Infection by Symbiotic Bacteria and Pathogens. Immunity. 2016 Mar 15; 44(3):647-658. Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M, Inohara N, Núñez G. PMID: 26944199.
      View in: PubMed   Mentions: 55     Fields:    Translation:AnimalsCells
    24. Addressing the Complications of Ebola and Other Viral Hemorrhagic Fever Infections: Using Insights from Bacterial and Fungal Sepsis. PLoS Pathog. 2015 Oct; 11(10):e1005088. Hellman J. PMID: 26425845.
      View in: PubMed   Mentions: 8     Fields:    Translation:Humans
    25. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun. 2015 Nov; 21(8):827-46. Khakpour S, Wilhelmsen K, Hellman J. PMID: 26403174.
      View in: PubMed   Mentions: 32     Fields:    Translation:HumansCells
    26. Lung Ischemia-Reperfusion is a Sterile Inflammatory Process Influenced by Commensal Microbiota in Mice. Shock. 2015 Sep; 44(3):272-9. Prakash A, Sundar SV, Zhu YG, Tran A, Lee JW, Lowell C, Hellman J. PMID: 26196836.
      View in: PubMed   Mentions: 17     Fields:    Translation:AnimalsCells
    27. Extracellular signal-regulated kinase 5 promotes acute cellular and systemic inflammation. Sci Signal. 2015 Aug 25; 8(391):ra86. Wilhelmsen K, Xu F, Farrar K, Tran A, Khakpour S, Sundar S, Prakash A, Wang J, Gray NS, Hellman J. PMID: 26307013.
      View in: PubMed   Mentions: 8     Fields:    Translation:HumansAnimalsCells
    28. Intravenous immunoglobulin skews macrophages to an anti-inflammatory, IL-10-producing activation state. J Leukoc Biol. 2015 Dec; 98(6):983-94. Kozicky LK, Zhao ZY, Menzies SC, Fidanza M, Reid GS, Wilhelmsen K, Hellman J, Hotte N, Madsen KL, Sly LM. PMID: 26216934.
      View in: PubMed   Mentions: 8     Fields:    Translation:HumansAnimalsCells
    29. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome. PLoS One. 2015; 10(5):e0126906. Feng X, Maze M, Koch LG, Britton SL, Hellman J. PMID: 25978669.
      View in: PubMed   Mentions: 3     Fields:    Translation:Animals
    30. Dual orientation of the outer membrane lipoprotein Pal in Escherichia coli. Microbiology. 2015 Jun; 161(6):1251-9. Michel LV, Shaw J, MacPherson V, Barnard D, Bettinger J, D'Arcy B, Surendran N, Hellman J, Pichichero ME. PMID: 25808171.
      View in: PubMed   Mentions:
    31. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells. J Biol Chem. 2014 May 09; 289(19):13079-100. Wilhelmsen K, Khakpour S, Tran A, Sheehan K, Schumacher M, Xu F, Hellman J. PMID: 24644287.
      View in: PubMed   Mentions: 11     Fields:    Translation:HumansCells
    32. Quantitative in vitro assay to measure neutrophil adhesion to activated primary human microvascular endothelial cells under static conditions. J Vis Exp. 2013 Aug 23; (78):e50677. Wilhelmsen K, Farrar K, Hellman J. PMID: 23995778.
      View in: PubMed   Mentions: 4     Fields:    Translation:HumansCells
    33. Alveolar macrophages and Toll-like receptor 4 mediate ventilated lung ischemia reperfusion injury in mice. Anesthesiology. 2012 Oct; 117(4):822-35. Prakash A, Mesa KR, Wilhelmsen K, Xu F, Dodd-o JM, Hellman J. PMID: 22890118.
      View in: PubMed   Mentions: 19     Fields:    Translation:HumansAnimalsCells
    34. Identification of hemopexin as an anti-inflammatory factor that inhibits synergy of hemoglobin with HMGB1 in sterile and infectious inflammation. J Immunol. 2012 Aug 15; 189(4):2017-22. Lin T, Sammy F, Yang H, Thundivalappil S, Hellman J, Tracey KJ, Warren HS. PMID: 22772444.
      View in: PubMed   Mentions: 29     Fields:    Translation:HumansAnimalsCells
    35. ERK5 protein promotes, whereas MEK1 protein differentially regulates, the Toll-like receptor 2 protein-dependent activation of human endothelial cells and monocytes. J Biol Chem. 2012 Aug 03; 287(32):26478-94. Wilhelmsen K, Mesa KR, Lucero J, Xu F, Hellman J. PMID: 22707717.
      View in: PubMed   Mentions: 12     Fields:    Translation:HumansCells
    36. Activation of endothelial TLR2 by bacterial lipoprotein upregulates proteins specific for the neutrophil response. Innate Immun. 2012 Aug; 18(4):602-16. Wilhelmsen K, Mesa KR, Prakash A, Xu F, Hellman J. PMID: 22186927.
      View in: PubMed   Mentions: 16     Fields:    Translation:HumansCells
    37. Bacterial lipoprotein TLR2 agonists broadly modulate endothelial function and coagulation pathways in vitro and in vivo. J Immunol. 2011 Jan 15; 186(2):1119-30. Shin HS, Xu F, Bagchi A, Herrup E, Prakash A, Valentine C, Kulkarni H, Wilhelmsen K, Warren S, Hellman J. PMID: 21169547.
      View in: PubMed   Mentions: 24     Fields:    Translation:HumansAnimalsCells
    38. Editorial: Pattern recognition receptors and factor B: "complement"ary pathways converge. J Leukoc Biol. 2010 Oct; 88(4):605-7. Prakash A, Hellman J. PMID: 20884653.
      View in: PubMed   Mentions:    Fields:    Translation:HumansAnimalsCells
    39. Resilience to bacterial infection: difference between species could be due to proteins in serum. J Infect Dis. 2010 Jan 15; 201(2):223-32. Warren HS, Fitting C, Hoff E, Adib-Conquy M, Beasley-Topliffe L, Tesini B, Liang X, Valentine C, Hellman J, Hayden D, Cavaillon JM. PMID: 20001600.
      View in: PubMed   Mentions: 60     Fields:    Translation:HumansAnimalsCells
    40. Upregulation of PD-L1 on monocytes and dendritic cells by HIV-1 derived TLR ligands. AIDS. 2008 Mar 12; 22(5):655-8. Meier A, Bagchi A, Sidhu HK, Alter G, Suscovich TJ, Kavanagh DG, Streeck H, Brockman MA, LeGall S, Hellman J, Altfeld M. PMID: 18317010.
      View in: PubMed   Mentions: 42     Fields:    Translation:HumansCells
    41. Activation of Toll-like receptor 2 impairs hypoxic pulmonary vasoconstriction in mice. Am J Physiol Lung Cell Mol Physiol. 2008 Feb; 294(2):L300-8. Petersen B, Bloch KD, Ichinose F, Shin HS, Shigematsu M, Bagchi A, Zapol WM, Hellman J. PMID: 18055842.
      View in: PubMed   Mentions: 9     Fields:    Translation:AnimalsCells
    42. MyD88-dependent immune activation mediated by human immunodeficiency virus type 1-encoded Toll-like receptor ligands. J Virol. 2007 Aug; 81(15):8180-91. Meier A, Alter G, Frahm N, Sidhu H, Li B, Bagchi A, Teigen N, Streeck H, Stellbrink HJ, Hellman J, van Lunzen J, Altfeld M. PMID: 17507480.
      View in: PubMed   Mentions: 125     Fields:    Translation:HumansAnimalsCells
    43. Toll-like receptor 2 activation by bacterial peptidoglycan-associated lipoprotein activates cardiomyocyte inflammation and contractile dysfunction. Crit Care Med. 2007 Mar; 35(3):886-92. Zhu X, Bagchi A, Zhao H, Kirschning CJ, Hajjar RJ, Chao W, Hellman J, Schmidt U. PMID: 17255871.
      View in: PubMed   Mentions: 29     Fields:    Translation:AnimalsCells
    44. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J Immunol. 2007 Jan 15; 178(2):1164-71. Bagchi A, Herrup EA, Warren HS, Trigilio J, Shin HS, Valentine C, Hellman J. PMID: 17202381.
      View in: PubMed   Mentions: 106     Fields:    Translation:AnimalsCells
    45. BACTERIAL PEPTIDOGLYCAN-ASSOCIATED LIPOPROTEIN (PAL) INDUCES DYSFUNCTION IN CARDIOMYOCYTES THROUGH MYOCARDIAL TLR2 /MYD88. Critical Care Medicine. 2006 Dec 1; 34(12):a25. Xinsheng Zhu, Aranya Bagchi, Huailong Zhao, Roger J Hajjar, Wei Chao, Judith Hellman, Ulrich Schmidt, Carsten J Kirschning. .
      View in: Publisher Site   Mentions:
    46. Passive immunization to outer membrane proteins MLP and PAL does not protect mice from sepsis. Mol Med. 2006 Sep-Oct; 12(9-10):252-8. Valentine CH, Hellman J, Beasley-Topliffe LK, Bagchi A, Warren HS. PMID: 17225874.
      View in: PubMed   Mentions: 3     Fields:    Translation:HumansAnimals
    47. MYD88 IS INDISPENSABLE FOR PEPTIDOGLYCAN-ASSOCIATED LIPOPRPTEIN (PAL) -INDUCED DYSFUNCTION AND DEATH IN MOUSE CARDIOMYOCYTES. Critical Care Medicine. 2005 Dec 1; 33(12):a15. Xinsheng Zhu, Aranya Bagchi, Huailong Zhao, Carlos I Duran, Roger J Hajjar, Wei Chao, Judith Hellman, Ulrich Schmidt. .
      View in: Publisher Site   Mentions:
    48. Increased leakage of sarcoplasmic reticulum Ca2+ contributes to abnormal myocyte Ca2+ handling and shortening in sepsis. Crit Care Med. 2005 Mar; 33(3):598-604. Zhu X, Bernecker OY, Manohar NS, Hajjar RJ, Hellman J, Ichinose F, Valdivia HH, Schmidt U. PMID: 15753753.
      View in: PubMed   Mentions: 26     Fields:    Translation:AnimalsCells
    49. Bacterial peptidoglycan-associated lipoprotein: a naturally occurring toll-like receptor 2 agonist that is shed into serum and has synergy with lipopolysaccharide. J Infect Dis. 2005 Mar 15; 191(6):939-48. Liang MD, Bagchi A, Warren HS, Tehan MM, Trigilio JA, Beasley-Topliffe LK, Tesini BL, Lazzaroni JC, Fenton MJ, Hellman J. PMID: 15717270.
      View in: PubMed   Mentions: 33     Fields:    Translation:HumansAnimalsCells
    50. BACTERIAL PAL ACTIVATES INFLAMMATION THROUGH TLR2 AND IN SYNERGY WITH LPS. Shock. 2004 Jun 1; 21:31. J. Hellman, S. Warren, B. Tesini, A. Bagchi. .
      View in: Publisher Site   Mentions:
    51. TOLERIZING AND PRIMING EFFECTS OF BACTERIAL PEPTIDOGLYCAN ASSOCIATED LIPOPROTEIN (PAL) AND LPS. Shock. 2004 Jun 1; 21:29. A. Bagchi, H. S. Warren, J. Trigilio, J. Hellman. .
      View in: Publisher Site   Mentions:
    52. BACTERIAL PAL AND LPS SYNERGISTICALLY ACTIVATE CELLULAR AND SYSTEMIC INFLAMMATION. Shock. 2004 Mar 1; 21(Supplement):20. Judith Hellman, Shaw H. Warren, Brenda Tesini, Aranya Bagchi. .
      View in: Publisher Site   Mentions:
    53. Protective efficacy of CAP18106-138-immunoglobulin G in sepsis. J Infect Dis. 2003 Nov 01; 188(9):1382-93. Warren HS, Matyal R, Allaire JE, Yarmush D, Loiselle P, Hellman J, Paton BG, Fink MP. PMID: 14593598.
      View in: PubMed   Mentions: 3     Fields:    Translation:AnimalsCells
    54. ALTERED Ca2+ CYCLING IN RAT HEART DURING SPESIS. Anesthesiology. 2003 Sep 1; 99(3):b57. Xinsheng Zhu, Naveen S Manohar, Oliver Y Bernecker, Roger J Hajjar, Judith Hellman, Fumito Ichinose, Héctor H Valdivia, Ulrich Schmidt. .
      View in: Publisher Site   Mentions:
    55. Murein lipoprotein, peptidoglycan-associated lipoprotein, and outer membrane protein A are present in purified rough and smooth lipopolysaccharides. J Infect Dis. 2003 Jul 15; 188(2):286-9. Hellman J, Tehan MM, Warren HS. PMID: 12854085.
      View in: PubMed   Mentions: 8     Fields:    Translation:Cells
    56. Bacterial peptidoglycan-associated lipoprotein is released into the bloodstream in gram-negative sepsis and causes inflammation and death in mice. J Biol Chem. 2002 Apr 19; 277(16):14274-80. Hellman J, Roberts JD, Tehan MM, Allaire JE, Warren HS. PMID: 11830585.
      View in: PubMed   Mentions: 28     Fields:    Translation:AnimalsCells
    57. Outer membrane protein A (OmpA), peptidoglycan-associated lipoprotein (PAL), and murein lipoprotein (MLP) are released in experimental Gram-negative sepsis. J Endotoxin Res. 2001; 7(1):69-72. Hellman J, Warren HS. PMID: 11521086.
      View in: PubMed   Mentions: 6     Fields:    Translation:Animals
    58. Outer membrane protein A, peptidoglycan-associated lipoprotein, and murein lipoprotein are released by Escherichia coli bacteria into serum. Infect Immun. 2000 May; 68(5):2566-72. Hellman J, Loiselle PM, Tehan MM, Allaire JE, Boyle LA, Kurnick JT, Andrews DM, Sik Kim K, Warren HS. PMID: 10768945.
      View in: PubMed   Mentions: 19     Fields:    Translation:HumansAnimalsCells
    59. Release of gram-negative outer-membrane proteins into human serum and septic rat blood and their interactions with immunoglobulin in antiserum to Escherichia coli J5. J Infect Dis. 2000 Mar; 181(3):1034-43. Hellman J, Loiselle PM, Zanzot EM, Allaire JE, Tehan MM, Boyle LA, Kurnick JT, Warren HS. PMID: 10720528.
      View in: PubMed   Mentions: 15     Fields:    Translation:HumansAnimalsCells
    60. Antibodies against bacterial membrane proteins. Innate Immunity. 1999 Aug 1; 5(4):213-215. Judith Hellman, H. Shaw Warren. .
      View in: Publisher Site   Mentions:
    61. Antiendotoxin strategies. Infect Dis Clin North Am. 1999 Jun; 13(2):371-86, ix. Hellman J, Warren HS. PMID: 10340172.
      View in: PubMed   Mentions: 3     Fields:    Translation:HumansAnimals
    62. Antiserum against Escherichia coli J5 contains antibodies reactive with outer membrane proteins of heterologous gram-negative bacteria. J Infect Dis. 1997 Nov; 176(5):1260-8. Hellman J, Zanzot EM, Loiselle PM, Amato SF, Black KM, Ge Y, Kurnick JT, Warren HS. PMID: 9359727.
      View in: PubMed   Mentions: 8     Fields:    Translation:HumansAnimalsCells
    63. Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. J Biol Chem. 1988 Jan 25; 263(3):1182-7. Sen K, Hellman J, Nikaido H. PMID: 2447086.
      View in: PubMed   Mentions: 52     Fields:    Translation:Cells
    Judith's Networks
    Concepts (267)
    Derived automatically from this person's publications.
    _
    Co-Authors (19)
    People in Profiles who have published with this person.
    _
    Similar People (60)
    People who share similar concepts with this person.
    _
    Same Department
    Search Department
    _