Tanja Kortemme, PhD

Title(s)Professor, Bioengineering
SchoolSchool of Pharmacy
Address1700 4th Street
San Francisco CA 94158
vCardDownload vCard

    Collapse Biography 
    Collapse Awards and Honors
    2019American Institute for Medical and Biological Engineering (AIMBE) Elected Fellow
    2017Chan Zuckerberg Biohub Investigator
    2013W.M. Keck Foundation Medical Research Award
    2008NSF CAREER Award
    2005Sloan Foundation Research Fellow
    2000Human Frontiers Science Program (HFSP) Postdoctoral Fellow
    1999European Molecular Biology Organization (EMBO) Postdoctoral Fellow
    1993European Molecular Biology Laboratory (EMBL) Graduate Fellowship
    1989German National Academic Foundation ("Studienstiftung des Deutschen Volkes") Scholarship

    Collapse Overview 
    Collapse Overview
    Engineered biological systems, ranging from molecules with new functions to entire organisms, have tremendous practical importance; they can also fundamentally change how we ask questions about the biological principles of function. Our research aims to invent approaches to engineer new molecules that operate as predicted in biological contexts, and to utilize prediction and engineering to address fundamental questions on the relationship of molecular mechanisms and systems-level function. To address the many current challenges in the field – from developing more predictive computational design methods to determining the requirements for function in cells – we combine concepts from computer science, physics, chemistry, mathematics, engineering and biology.

    Our work spans three interrelated themes:

    I. Develop computational methods for modeling & design of proteins, in the program Rosetta (www.rosettacommons.org).

    Predicting and designing the structures of proteins with biologically useful accuracy has been a key challenge in computational structural biology and molecular engineering. We have made methodological advances that address one of the main bottlenecks: sampling the vast number of conformations accessible to proteins. We have utilized a method for moving through conformational space inspired by principles from robotics – a field with a rich history in efficient calculation of mechanically accessible states subject to constraints. We applied the same mathematics that can be used to direct the motions of a robot arm to compute the degrees of freedom of a polypeptide chain (Mandell et al., Nature Methods 2009). Our predictions generate hypotheses on protein conformations controlling biological processes – such as protein recognition, signal transduction, and enzyme active site gating – and are laying the foundation for our work reengineering and “reshaping” protein interfaces and active sites for new functions. From March-August 2020, we rapidly deployed our methods to engineer ACE2-based receptor traps that potently neutralize live SARS-CoV-2 virus in cell culture as therapeutic candidates for further development (Glasgow et al., PNAS 2020). Most recently, we developed an approach to engineer a vast universe of new proteins with tunable shapes (Pan et al., Science 2020).

    II. Create new proteins and devices with more advanced functions by experimental engineering.

    Designer molecules with new biological functions could have many exciting uses: protein therapeutics with minimal side effects; new enzymes and biological synthesis pathways for fuel molecules or compounds that are otherwise too expensive to produce; sensor/actuator devices that can report on cell biological processes in real time; robust signaling systems that can detect specific inputs and generate a precise response; protein machines that can be controlled by specific external inputs such as light. Over the past several years, we have engineered a range of proteins with new functions, including protein-protein interactions that are specific enough to control complex biological processes in mammalian cells (Kapp, Liu et al., PNAS, 2012). We have also engineered proteins whose functions can be switched by phosphorylation or light. One example is a study describing the control of precise shape transitions of a large protein assembly with optical inputs, where we successfully exchanged the ‘engine’ of a protein-based ATP-driven molecular machine to be powered by light (Hoersch et al., Nature Nanotechnology 2013). Most recently, we have focused on application of computational protein design to endow cells with the ability to sense and respond to new molecular signals and orchestrate desired biological responses, one of the most fundamental capabilities of living systems (Glasgow, Huang, Mandell et al., Science 2019).

    III. Dissect design principles of function in cells by combining prediction and engineering approaches.

    The complexity of biological interaction networks makes it impossible at present to accurately predict the effects of perturbations to the network, such as expression changes or mutations, and, consequently, how to intervene effectively when networks are misregulated. To address this problem, we have become increasingly interested in approaches that quantify the complex cellular consequences of perturbations to biological networks together with their underlying mechanisms. In 2012, we published a study on engineered perturbations to a classic system for regulatory mechanisms of gene expression: the lac operon (Eames & Kortemme, Science 2012). A current experimental effort is directed towards determining the system-level functions of specific interactions in cells and organisms by systematically modulating protein interactions and protein abundance. In collaboration with Nevan Krogan’s laboratory at UCSF, we have made systematic mutational perturbations in a central GTPase molecular switch conserved in all eukaryotes (Perica, Mathy et al., bioRxiv 2021). By integrating functional genetic and proteomics approaches with biophysics, we find that distinct biological processes are differentially sensitive to the kinetics of switching, addressing the long-standing question of how a single molecular switch can differentially regulate different cellular functions. We hope that these principles of cellular control can guide cellular engineering, and ultimately lead to new and more precise ways to counteract misregulation in disease.

    Collapse Research 
    Collapse Research Activities and Funding
    Quantifying molecular and cellular constraints on protein function through in vivo fitness assays and computational protein design
    NSF MCB-1615990Aug 1, 2016 - Jul 31, 2021
    Role: Principal Investigator
    Robotics-inspired modeling & design of proteins
    NSF DBI-1564692Apr 15, 2016 - Mar 31, 2020
    Role: Principal Investigator
    Discovery of Protein Network Function
    NIH/NIGMS R01GM117189Jan 1, 2016 - Dec 31, 2020
    Role: Principal Investigator
    Computational design of new protein structures and interactions
    NIH/NIGMS R01GM110089May 1, 2015 - Apr 30, 2024
    Role: Principal Investigator
    Computational design of protein-based modular small-molecule biosensors
    NIH R21EB013389Apr 1, 2011 - Mar 31, 2014
    Role: Principal Investigator
    Molecular Biophysics Training Grant
    NIH T32GM008284Sep 30, 1988 - Jun 30, 2023
    Role: Principal Investigator

    Collapse ORNG Applications 
    Collapse Featured Publications

    Collapse Featured Content 
    Collapse Twitter

    Collapse Bibliographic 
    Collapse Publications
    Publications listed below are automatically derived from MEDLINE/PubMed and other sources, which might result in incorrect or missing publications. Researchers can login to make corrections and additions, or contact us for help. to make corrections and additions.
    Newest   |   Oldest   |   Most Cited   |   Most Discussed   |   Timeline   |   Field Summary   |   Plain Text
    Altmetrics Details PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score represents citations in news articles and social media. (Note that publications are often cited in additional ways that are not shown here.) Fields are based on how the National Library of Medicine (NLM) classifies the publication's journal and might not represent the specific topic of the publication. Translation tags are based on the publication type and the MeSH terms NLM assigns to the publication. Some publications (especially newer ones and publications not in PubMed) might not yet be assigned Field or Translation tags.) Click a Field or Translation tag to filter the publications.
    1. Systems-level effects of allosteric perturbations to a model molecular switch. Nature. 2021 Oct 13. Perica T, Mathy CJP, Xu J, Jang G?, Zhang Y, Kaake R, Ollikainen N, Braberg H, Swaney DL, Lambright DG, Kelly MJS, Krogan NJ, Kortemme T. PMID: 34646016.
      View in: PubMed   Mentions:    Fields:    
    2. Design principles of protein switches. Curr Opin Struct Biol. 2021 Sep 16; 72:71-78. Alberstein RG, Guo AB, Kortemme T. PMID: 34537489.
      View in: PubMed   Mentions:    Fields:    
    3. Reply to Liu et al.: Specific mutations matter in specificity and catalysis in ACE2. Proc Natl Acad Sci U S A. 2021 Apr 13; 118(15). Glasgow J, Glasgow A, Kortemme T, Wells JA. PMID: 33833059.
      View in: PubMed   Mentions:    Fields:    
    4. Recent advances in de novo protein design: Principles, methods, and applications. J Biol Chem. 2021 Jan-Jun; 296:100558. Pan X, Kortemme T. PMID: 33744284.
      View in: PubMed   Mentions: 1     Fields:    Translation:Cells
    5. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc Natl Acad Sci U S A. 2020 11 10; 117(45):28046-28055. Glasgow A, Glasgow J, Limonta D, Solomon P, Lui I, Zhang Y, Nix MA, Rettko NJ, Zha S, Yamin R, Kao K, Rosenberg OS, Ravetch JV, Wiita AP, Leung KK, Lim SA, Zhou XX, Hobman TC, Kortemme T, Wells JA. PMID: 33093202.
      View in: PubMed   Mentions: 45     Fields:    Translation:HumansAnimalsCells
    6. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science. 2020 12 04; 370(6521). Hanna RF, Ward TJ, Chow DS, Lagana SM, Moreira RK, Emond JC, Weintraub JL, Prince MR, Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, Jureka AS, Obernier K, Guo JZ, Batra J, Kaake RM, Weckstein AR, Owens TW, Gupta M, Pourmal S, Titus EW, Cakir M, Soucheray M, McGregor M, Cakir Z, Jang G, O'Meara MJ, Tummino TA, Zhang Z, Foussard H, Rojc A, Zhou Y, Kuchenov D, Hüttenhain R, Xu J, Eckhardt M, Swaney DL, Fabius JM, Ummadi M, Tutuncuoglu B, Rathore U, Modak M, Haas P, Haas KM, Naing ZZC, Pulido EH, Shi Y, Barrio-Hernandez I, Memon D, Petsalaki E, Dunham A, Marrero MC, Burke D, Koh C, Vallet T, Silvas JA, Azumaya CM, Billesbølle C, Brilot AF, Campbell MG, Diallo A, Dickinson MS, Diwanji D, Herrera N, Hoppe N, Kratochvil HT, Liu Y, Merz GE, Moritz M, Nguyen HC, Nowotny C, Puchades C, Rizo AN, Schulze-Gahmen U, Smith AM, Sun M, Young ID, Zhao J, Asarnow D, Biel J, Bowen A, Braxton JR, Chen J, Chio CM, Chio US, Deshpande I, Doan L, Faust B, Flores S, Jin M, Kim K, Lam VL, Li F, Li J, Li YL, Li Y, Liu X, Lo M, Lopez KE, Melo AA, Moss FR, Nguyen P, Paulino J, Pawar KI, Peters JK, Pospiech TH, Safari M, Sangwan S, Schaefer K, Thomas PV, Thwin AC, Trenker R, Tse E, Tsui TKM, Wang F, Whitis N, Yu Z, Zhang K, Zhang Y, Zhou F, Saltzberg D, QCRG Structural Biology Consortium, Hodder AJ, Shun-Shion AS, Williams DM, White KM, Rosales R, Kehrer T, Miorin L, Moreno E, Patel AH, Rihn S, Khalid MM, Vallejo-Gracia A, Fozouni P, Simoneau CR, Roth TL, Wu D, Karim MA, Ghoussaini M, Dunham I, Berardi F, Weigang S, Chazal M, Park J, Logue J, McGrath M, Weston S, Haupt R, Hastie CJ, Elliott M, Brown F, Burness KA, Reid E, Dorward M, Johnson C, Wilkinson SG, Geyer A, Giesel DM, Baillie C, Raggett S, Leech H, Toth R, Goodman N, Keough KC, Lind AL, Zoonomia Consortium, Klesh RJ, Hemphill KR, Carlson-Stevermer J, Oki J, Holden K, Maures T, Pollard KS, Sali A, Agard DA, Cheng Y, Fraser JS, Frost A, Jura N, Kortemme T, Manglik A, Southworth DR, et al. PMID: 33060197; PMCID: PMC7808408.
      View in: PubMed   Mentions: 97     Fields:    Translation:HumansCells
    7. New computational protein design methods for de novo small molecule binding sites. PLoS Comput Biol. 2020 10; 16(10):e1008178. Lucas JE, Kortemme T. PMID: 33017412.
      View in: PubMed   Mentions: 4     Fields:    Translation:Cells
    8. Expanding the space of protein geometries by computational design of de novo fold families. Science. 2020 08 28; 369(6507):1132-1136. Pan X, Thompson MC, Zhang Y, Liu L, Fraser JS, Kelly MJS, Kortemme T. PMID: 32855341.
      View in: PubMed   Mentions: 6     Fields:    Translation:Cells
    9. Altered expression of a quality control protease in E. coli reshapes the in vivo mutational landscape of a model enzyme. Elife. 2020 07 23; 9. Thompson S, Zhang Y, Ingle C, Reynolds KA, Kortemme T. PMID: 32701056.
      View in: PubMed   Mentions: 2     Fields:    Translation:Cells
    10. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell. 2020 08 06; 182(3):685-712.e19. Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. PMID: 32645325.
      View in: PubMed   Mentions: 173     Fields:    Translation:HumansAnimalsCellsPHPublic Health
    11. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat Methods. 2020 07; 17(7):665-680. Leman JK, Weitzner BD, Lewis SM, Adolf-Bryfogle J, Alam N, Alford RF, Aprahamian M, Baker D, Barlow KA, Barth P, Basanta B, Bender BJ, Blacklock K, Bonet J, Boyken SE, Bradley P, Bystroff C, Conway P, Cooper S, Correia BE, Coventry B, Das R, De Jong RM, DiMaio F, Dsilva L, Dunbrack R, Ford AS, Frenz B, Fu DY, Geniesse C, Goldschmidt L, Gowthaman R, Gray JJ, Gront D, Guffy S, Horowitz S, Huang PS, Huber T, Jacobs TM, Jeliazkov JR, Johnson DK, Kappel K, Karanicolas J, Khakzad H, Khar KR, Khare SD, Khatib F, Khramushin A, King IC, Kleffner R, Koepnick B, Kortemme T, Kuenze G, Kuhlman B, Kuroda D, Labonte JW, Lai JK, Lapidoth G, Leaver-Fay A, Lindert S, Linsky T, London N, Lubin JH, Lyskov S, Maguire J, Malmström L, Marcos E, Marcu O, Marze NA, Meiler J, Moretti R, Mulligan VK, Nerli S, Norn C, Ó'Conchúir S, Ollikainen N, Ovchinnikov S, Pacella MS, Pan X, Park H, Pavlovicz RE, Pethe M, Pierce BG, Pilla KB, Raveh B, Renfrew PD, Burman SSR, Rubenstein A, Sauer MF, Scheck A, Schief W, Schueler-Furman O, Sedan Y, Sevy AM, Sgourakis NG, Shi L, Siegel JB, Silva DA, Smith S, Song Y, Stein A, Szegedy M, Teets FD, Thyme SB, Wang RY, Watkins A, Zimmerman L, Bonneau R. PMID: 32483333.
      View in: PubMed   Mentions: 44     Fields:    Translation:Cells
    12. Better together: Elements of successful scientific software development in a distributed collaborative community. PLoS Comput Biol. 2020 05; 16(5):e1007507. Koehler Leman J, Weitzner BD, Renfrew PD, Lewis SM, Moretti R, Watkins AM, Mulligan VK, Lyskov S, Adolf-Bryfogle J, Labonte JW, Krys J, RosettaCommons Consortium , Bystroff C, Schief W, Gront D, Schueler-Furman O, Baker D, Bradley P, Dunbrack R, Kortemme T, Leaver-Fay A, Strauss CEM, Meiler J, Kuhlman B, Gray JJ, Bonneau R. PMID: 32365137.
      View in: PubMed   Mentions: 7     Fields:    Translation:Humans
    13. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020 07; 583(7816):459-468. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. PMID: 32353859.
      View in: PubMed   Mentions: 1008     Fields:    Translation:HumansAnimalsCellsPHPublic Health
    14. Computational design of a modular protein sense-response system. Science. 2019 11 22; 366(6468):1024-1028. Glasgow AA, Huang YM, Mandell DJ, Thompson M, Ritterson R, Loshbaugh AL, Pellegrino J, Krivacic C, Pache RA, Barlow KA, Ollikainen N, Jeon D, Kelly MJS, Fraser JS, Kortemme T. PMID: 31754004.
      View in: PubMed   Mentions: 10     Fields:    Translation:Cells
    15. Comparison of Rosetta flexible-backbone computational protein design methods on binding interactions. Proteins. 2020 01; 88(1):206-226. Loshbaugh AL, Kortemme T. PMID: 31344278.
      View in: PubMed   Mentions: 9     Fields:    Translation:HumansCells
    16. Quantitative mapping of protein-peptide affinity landscapes using spectrally encoded beads. Elife. 2019 07 08; 8. Nguyen HQ, Roy J, Harink B, Damle NP, Latorraca NR, Baxter BC, Brower K, Longwell SA, Kortemme T, Thorn KS, Cyert MS, Fordyce PM. PMID: 31282865.
      View in: PubMed   Mentions: 11     Fields:    Translation:HumansCells
    17. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs. Nat Commun. 2019 05 09; 10(1):2127. Kundert K, Lucas JE, Watters KE, Fellmann C, Ng AH, Heineike BM, Fitzsimmons CM, Oakes BL, Qu J, Prasad N, Rosenberg OS, Savage DF, El-Samad H, Doudna JA, Kortemme T. PMID: 31073154.
      View in: PubMed   Mentions: 26     Fields:    
    18. Computational design of structured loops for new protein functions. Biol Chem. 2019 02 25; 400(3):275-288. Kundert K, Kortemme T. PMID: 30676995.
      View in: PubMed   Mentions: 10     Fields:    Translation:Cells
    19. Extending chemical perturbations of the ubiquitin fitness landscape in a classroom setting reveals new constraints on sequence tolerance. Biol Open. 2018 Jul 23; 7(7). Mavor D, Barlow KA, Asarnow D, Birman Y, Britain D, Chen W, Green EM, Kenner LR, Mensa B, Morinishi LS, Nelson CA, Poss EM, Suresh P, Tian R, Arhar T, Ary BE, Bauer DP, Bergman ID, Brunetti RM, Chio CM, Dai SA, Dickinson MS, Elledge SK, Helsell CVM, Hendel NL, Kang E, Kern N, Khoroshkin MS, Kirkemo LL, Lewis GR, Lou K, Marin WM, Maxwell AM, McTigue PF, Myers-Turnbull D, Nagy TL, Natale AM, Oltion K, Pourmal S, Reder GK, Rettko NJ, Rohweder PJ, Schwarz DMC, Tan SK, Thomas PV, Tibble RW, Town JP, Tsai MK, Ugur FS, Wassarman DR, Wolff AM, Wu TS, Bogdanoff D, Li J, Thorn KS, O'Conchúir S, Swaney DL, Chow ED, Madhani HD, Redding S, Bolon DN, Kortemme T, DeRisi JL, Kampmann M, Fraser JS. PMID: 30037883.
      View in: PubMed   Mentions:
    20. Flex ddG: Rosetta Ensemble-Based Estimation of Changes in Protein-Protein Binding Affinity upon Mutation. J Phys Chem B. 2018 05 31; 122(21):5389-5399. Barlow KA, Ó Conchúir S, Thompson S, Suresh P, Lucas JE, Heinonen M, Kortemme T. PMID: 29401388.
      View in: PubMed   Mentions: 36     Fields:    Translation:Cells
    21. Engineering a light-activated caspase-3 for precise ablation of neurons in vivo. Proc Natl Acad Sci U S A. 2017 09 26; 114(39):E8174-E8183. Smart AD, Pache RA, Thomsen ND, Kortemme T, Davis GW, Wells JA. PMID: 28893998.
      View in: PubMed   Mentions: 9     Fields:    Translation:AnimalsCells
    22. Deconstruction of the Ras switching cycle through saturation mutagenesis. Elife. 2017 07 07; 6. Bandaru P, Shah NH, Bhattacharyya M, Barton JP, Kondo Y, Cofsky JC, Gee CL, Chakraborty AK, Kortemme T, Ranganathan R, Kuriyan J. PMID: 28686159.
      View in: PubMed   Mentions: 24     Fields:    Translation:HumansCells
    23. The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. J Chem Theory Comput. 2017 Jun 13; 13(6):3031-3048. Alford RF, Leaver-Fay A, Jeliazkov JR, O'Meara MJ, DiMaio FP, Park H, Shapovalov MV, Renfrew PD, Mulligan VK, Kappel K, Labonte JW, Pacella MS, Bonneau R, Bradley P, Dunbrack RL, Das R, Baker D, Kuhlman B, Kortemme T, Gray JJ. PMID: 28430426.
      View in: PubMed   Mentions: 208     Fields:    Translation:Cells
    24. Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting. Elife. 2016 04 25; 5. Mavor D, Barlow K, Thompson S, Barad BA, Bonny AR, Cario CL, Gaskins G, Liu Z, Deming L, Axen SD, Caceres E, Chen W, Cuesta A, Gate RE, Green EM, Hulce KR, Ji W, Kenner LR, Mensa B, Morinishi LS, Moss SM, Mravic M, Muir RK, Niekamp S, Nnadi CI, Palovcak E, Poss EM, Ross TD, Salcedo EC, See SK, Subramaniam M, Wong AW, Li J, Thorn KS, Conchúir SÓ, Roscoe BP, Chow ED, DeRisi JL, Kortemme T, Bolon DN, Fraser JS. PMID: 27111525.
      View in: PubMed   Mentions: 22     Fields:    Translation:HumansAnimals
    25. A Model for the Molecular Mechanism of an Engineered Light-Driven Protein Machine. Structure. 2016 Apr 05; 24(4):576-584. Hoersch D, Kortemme T. PMID: 27021162.
      View in: PubMed   Mentions: 2     Fields:    Translation:Cells
    26. Design of Light-Controlled Protein Conformations and Functions. Methods Mol Biol. 2016; 1414:197-211. Ritterson RS, Hoersch D, Barlow KA, Kortemme T. PMID: 27094293.
      View in: PubMed   Mentions:    Fields:    Translation:Cells
    27. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity. PLoS Comput Biol. 2015; 11(9):e1004335. Ollikainen N, de Jong RM, Kortemme T. PMID: 26397464.
      View in: PubMed   Mentions: 21     Fields:    Translation:Cells
    28. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design. PLoS One. 2015; 10(9):e0130433. Ó Conchúir S, Barlow KA, Pache RA, Ollikainen N, Kundert K, O'Meara MJ, Smith CA, Kortemme T. PMID: 26335248.
      View in: PubMed   Mentions: 22     Fields:    Translation:Cells
    29. Combined covalent-electrostatic model of hydrogen bonding improves structure prediction with Rosetta. J Chem Theory Comput. 2015 Feb 10; 11(2):609-22. O'Meara MJ, Leaver-Fay A, Tyka MD, Stein A, Houlihan K, DiMaio F, Bradley P, Kortemme T, Baker D, Snoeyink J, Kuhlman B. PMID: 25866491.
      View in: PubMed   Mentions: 88     Fields:    Translation:Cells
    30. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition. Proc Natl Acad Sci U S A. 2014 Oct 28; 111(43):15426-31. Melero C, Ollikainen N, Harwood I, Karpiak J, Kortemme T. PMID: 25313039.
      View in: PubMed   Mentions: 9     Fields:    Translation:Cells
    31. Editorial overview: Engineering and design: raising the bar through innovation and integration. Curr Opin Struct Biol. 2014 Aug; 27:vi-viii. Koide S, Kortemme T. PMID: 25175941.
      View in: PubMed   Mentions:    Fields:    
    32. Reprogramming an ATP-driven protein machine into a light-gated nanocage. Nat Nanotechnol. 2013 Dec; 8(12):928-32. Hoersch D, Roh SH, Chiu W, Kortemme T. PMID: 24270642.
      View in: PubMed   Mentions: 15     Fields:    
    33. Computational protein design quantifies structural constraints on amino acid covariation. PLoS Comput Biol. 2013; 9(11):e1003313. Ollikainen N, Kortemme T. PMID: 24244128.
      View in: PubMed   Mentions: 15     Fields:    Translation:Cells
    34. Amino-acid site variability among natural and designed proteins. PeerJ. 2013; 1:e211. Jackson EL, Ollikainen N, Covert AW, Kortemme T, Wilke CO. PMID: 24255821.
      View in: PubMed   Mentions:
    35. Design of a photoswitchable cadherin. J Am Chem Soc. 2013 Aug 28; 135(34):12516-9. Ritterson RS, Kuchenbecker KM, Michalik M, Kortemme T. PMID: 23923816.
      View in: PubMed   Mentions: 4     Fields:    Translation:Cells
    36. Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE). PLoS One. 2013; 8(5):e63906. Lyskov S, Chou FC, Conchúir SÓ, Der BS, Drew K, Kuroda D, Xu J, Weitzner BD, Renfrew PD, Sripakdeevong P, Borgo B, Havranek JJ, Kuhlman B, Kortemme T, Bonneau R, Gray JJ, Das R. PMID: 23717507.
      View in: PubMed   Mentions: 122     Fields:    Translation:Cells
    37. Improvements to robotics-inspired conformational sampling in rosetta. PLoS One. 2013; 8(5):e63090. Stein A, Kortemme T. PMID: 23704889.
      View in: PubMed   Mentions: 63     Fields:    Translation:Cells
    38. Flexible backbone sampling methods to model and design protein alternative conformations. Methods Enzymol. 2013; 523:61-85. Ollikainen N, Smith CA, Fraser JS, Kortemme T. PMID: 23422426.
      View in: PubMed   Mentions: 17     Fields:    Translation:Cells
    39. Scientific benchmarks for guiding macromolecular energy function improvement. Methods Enzymol. 2013; 523:109-43. Leaver-Fay A, O'Meara MJ, Tyka M, Jacak R, Song Y, Kellogg EH, Thompson J, Davis IW, Pache RA, Lyskov S, Gray JJ, Kortemme T, Richardson JS, Havranek JJ, Snoeyink J, Baker D, Kuhlman B. PMID: 23422428.
      View in: PubMed   Mentions: 95     Fields:    Translation:Cells
    40. Design of a phosphorylatable PDZ domain with peptide-specific affinity changes. Structure. 2013 Jan 08; 21(1):54-64. Smith CA, Shi CA, Chroust MK, Bliska TE, Kelly MJS, Jacobson MP, Kortemme T. PMID: 23159126.
      View in: PubMed   Mentions: 6     Fields:    Translation:HumansCells
    41. Prediction of mutational tolerance in HIV-1 protease and reverse transcriptase using flexible backbone protein design. PLoS Comput Biol. 2012; 8(8):e1002639. Humphris-Narayanan E, Akiva E, Varela R, Ó Conchúir S, Kortemme T. PMID: 22927804.
      View in: PubMed   Mentions: 13     Fields:    Translation:Cells
    42. Cost-benefit tradeoffs in engineered lac operons. Science. 2012 May 18; 336(6083):911-5. Eames M, Kortemme T. PMID: 22605776.
      View in: PubMed   Mentions: 40     Fields:    Translation:Cells
    43. Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair. Proc Natl Acad Sci U S A. 2012 Apr 03; 109(14):5277-82. Kapp GT, Liu S, Stein A, Wong DT, Reményi A, Yeh BJ, Fraser JS, Taunton J, Lim WA, Kortemme T. PMID: 22403064.
      View in: PubMed   Mentions: 36     Fields:    Translation:AnimalsCells
    44. Global landscape of HIV-human protein complexes. Nature. 2011 Dec 21; 481(7381):365-70. Jäger S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, Hernandez H, Jang GM, Roth SL, Akiva E, Marlett J, Stephens M, D'Orso I, Fernandes J, Fahey M, Mahon C, O'Donoghue AJ, Todorovic A, Morris JH, Maltby DA, Alber T, Cagney G, Bushman FD, Young JA, Chanda SK, Sundquist WI, Kortemme T, Hernandez RD, Craik CS, Burlingame A, Sali A, Frankel AD, Krogan NJ. PMID: 22190034.
      View in: PubMed   Mentions: 315     Fields:    Translation:HumansCells
    45. A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin- dependent kinase II holoenzyme. Cell. 2011 Sep 02; 146(5):732-45. Chao LH, Stratton MM, Lee IH, Rosenberg OS, Levitz J, Mandell DJ, Kortemme T, Groves JT, Schulman H, Kuriyan J. PMID: 21884935.
      View in: PubMed   Mentions: 100     Fields:    Translation:HumansAnimalsCells
    46. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design. PLoS One. 2011; 6(7):e20451. Smith CA, Kortemme T. PMID: 21789164.
      View in: PubMed   Mentions: 46     Fields:    Translation:HumansCells
    47. Assessment of flexible backbone protein design methods for sequence library prediction in the therapeutic antibody Herceptin-HER2 interface. Protein Sci. 2011 Jun; 20(6):1082-9. Babor M, Mandell DJ, Kortemme T. PMID: 21465611.
      View in: PubMed   Mentions: 17     Fields:    Translation:HumansCells
    48. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011; 487:545-74. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YE, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popovic Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P. PMID: 21187238.
      View in: PubMed   Mentions: 688     Fields:    
    49. Construction of a genetic multiplexer to toggle between chemosensory pathways in Escherichia coli. J Mol Biol. 2011 Feb 18; 406(2):215-27. Moon TS, Clarke EJ, Groban ES, Tamsir A, Clark RM, Eames M, Kortemme T, Voigt CA. PMID: 21185306.
      View in: PubMed   Mentions: 20     Fields:    Translation:Cells
    50. SNX27 mediates PDZ-directed sorting from endosomes to the plasma membrane. J Cell Biol. 2010 Aug 23; 190(4):565-74. Lauffer BE, Melero C, Temkin P, Lei C, Hong W, Kortemme T, von Zastrow M. PMID: 20733053.
      View in: PubMed   Mentions: 128     Fields:    Translation:HumansAnimalsCells
    51. Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains. J Mol Biol. 2010 Sep 17; 402(2):460-74. Smith CA, Kortemme T. PMID: 20654621.
      View in: PubMed   Mentions: 46     Fields:    Translation:Cells
    52. RosettaBackrub--a web server for flexible backbone protein structure modeling and design. Nucleic Acids Res. 2010 Jul; 38(Web Server issue):W569-75. Lauck F, Smith CA, Friedland GF, Humphris EL, Kortemme T. PMID: 20462859.
      View in: PubMed   Mentions: 45     Fields:    Translation:Cells
    53. Designing ensembles in conformational and sequence space to characterize and engineer proteins. Curr Opin Struct Biol. 2010 Jun; 20(3):377-84. Friedland GD, Kortemme T. PMID: 20303740.
      View in: PubMed   Mentions: 12     Fields:    Translation:HumansCells
    54. Computer-aided design of functional protein interactions. Nat Chem Biol. 2009 Nov; 5(11):797-807. Mandell DJ, Kortemme T. PMID: 19841629.
      View in: PubMed   Mentions: 72     Fields:    Translation:Cells
    55. Backbone flexibility in computational protein design. Curr Opin Biotechnol. 2009 Aug; 20(4):420-8. Mandell DJ, Kortemme T. PMID: 19709874.
      View in: PubMed   Mentions: 45     Fields:    Translation:Cells
    56. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods. 2009 Aug; 6(8):551-2. Mandell DJ, Coutsias EA, Kortemme T. PMID: 19644455.
      View in: PubMed   Mentions: 191     Fields:    Translation:Cells
    57. Multi-constraint computational design suggests that native sequences of germline antibody H3 loops are nearly optimal for conformational flexibility. Proteins. 2009 Jun; 75(4):846-58. Babor M, Kortemme T. PMID: 19194863.
      View in: PubMed   Mentions: 24     Fields:    Translation:Cells
    58. A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family. PLoS Comput Biol. 2009 May; 5(5):e1000393. Friedland GD, Lakomek NA, Griesinger C, Meiler J, Kortemme T. PMID: 19478996.
      View in: PubMed   Mentions: 39     Fields:    Translation:Cells
    59. Complex topology rather than complex membership is a determinant of protein dosage sensitivity. Mol Syst Biol. 2009; 5:253. Oberdorf R, Kortemme T. PMID: 19293832.
      View in: PubMed   Mentions: 11     Fields:    Translation:Animals
    60. Outcome of a workshop on applications of protein models in biomedical research. Structure. 2009 Feb 13; 17(2):151-9. Schwede T, Sali A, Honig B, Levitt M, Berman HM, Jones D, Brenner SE, Burley SK, Das R, Dokholyan NV, Dunbrack RL, Fidelis K, Fiser A, Godzik A, Huang YJ, Humblet C, Jacobson MP, Joachimiak A, Krystek SR, Kortemme T, Kryshtafovych A, Montelione GT, Moult J, Murray D, Sanchez R, Sosnick TR, Standley DM, Stouch T, Vajda S, Vasquez M, Westbrook JD, Wilson IA. PMID: 19217386.
      View in: PubMed   Mentions: 66     Fields:    Translation:HumansAnimalsCells
    61. Differences in flexibility underlie functional differences in the Ras activators son of sevenless and Ras guanine nucleotide releasing factor 1. Structure. 2009 Jan 14; 17(1):41-53. Freedman TS, Sondermann H, Kuchment O, Friedland GD, Kortemme T, Kuriyan J. PMID: 19141281.
      View in: PubMed   Mentions: 12     Fields:    Translation:HumansAnimalsCells
    62. SAT-based Protein Design. 2009 IEEE/ACM International Conference on Computer-Aided Design Digest of Technical Papers (ICCAD 2009). 2009; 128-35. Ollikainen N, Sentovich E, Coelho C, Kuehlmann A, Kortemme T.
    63. Prediction of protein-protein interface sequence diversity using flexible backbone computational protein design. Structure. 2008 Dec 10; 16(12):1777-88. Humphris EL, Kortemme T. PMID: 19081054.
      View in: PubMed   Mentions: 33     Fields:    Translation:HumansCells
    64. Engineered protein connectivity to actin mimics PDZ-dependent recycling of G protein-coupled receptors but not its regulation by Hrs. J Biol Chem. 2009 Jan 23; 284(4):2448-58. Lauffer BE, Chen S, Melero C, Kortemme T, von Zastrow M, Vargas GA. PMID: 19001361.
      View in: PubMed   Mentions: 10     Fields:    Translation:HumansAnimalsCells
    65. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J Mol Biol. 2008 Jul 18; 380(4):742-56. Smith CA, Kortemme T. PMID: 18547585.
      View in: PubMed   Mentions: 129     Fields:    Translation:Cells
    66. A simple model of backbone flexibility improves modeling of side-chain conformational variability. J Mol Biol. 2008 Jul 18; 380(4):757-74. Friedland GD, Linares AJ, Smith CA, Kortemme T. PMID: 18547586.
      View in: PubMed   Mentions: 36     Fields:    Translation:Cells
    67. A new twist in TCR diversity revealed by a forbidden alphabeta TCR. J Mol Biol. 2008 Feb 01; 375(5):1306-19. McBeth C, Seamons A, Pizarro JC, Fleishman SJ, Baker D, Kortemme T, Goverman JM, Strong RK. PMID: 18155234.
      View in: PubMed   Mentions: 15     Fields:    Translation:AnimalsCellsPHPublic Health
    68. Structural mapping of protein interactions reveals differences in evolutionary pressures correlated to mRNA level and protein abundance. Structure. 2007 Nov; 15(11):1442-51. Eames M, Kortemme T. PMID: 17997970.
      View in: PubMed   Mentions: 10     Fields:    Translation:AnimalsCells
    69. Mutations designed to destabilize the receptor-bound conformation increase MICA-NKG2D association rate and affinity. J Biol Chem. 2007 Oct 19; 282(42):30658-66. Lengyel CS, Willis LJ, Mann P, Baker D, Kortemme T, Strong RK, McFarland BJ. PMID: 17690100.
      View in: PubMed   Mentions: 15     Fields:    Translation:HumansCells
    70. Design of multi-specificity in protein interfaces. PLoS Comput Biol. 2007 Aug; 3(8):e164. Humphris EL, Kortemme T. PMID: 17722975.
      View in: PubMed   Mentions: 56     Fields:    Translation:Cells
    71. A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc Natl Acad Sci U S A. 2006 Nov 07; 103(45):16692-7. Freedman TS, Sondermann H, Friedland GD, Kortemme T, Bar-Sagi D, Marqusee S, Kuriyan J. PMID: 17075039.
      View in: PubMed   Mentions: 52     Fields:    Translation:HumansAnimalsCells
    72. Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease. Proc Natl Acad Sci U S A. 2006 Aug 01; 103(31):11503-8. Wang SX, Pandey KC, Somoza JR, Sijwali PS, Kortemme T, Brinen LS, Fletterick RJ, Rosenthal PJ, McKerrow JH. PMID: 16864794.
      View in: PubMed   Mentions: 24     Fields:    Translation:HumansAnimalsCells
    73. Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein-protein interface. J Mol Biol. 2006 Aug 04; 361(1):195-208. Joachimiak LA, Kortemme T, Stoddard BL, Baker D. PMID: 16831445.
      View in: PubMed   Mentions: 66     Fields:    Translation:Cells
    74. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol. 2006 May; 13(5):521-30. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY. PMID: 16720273.
      View in: PubMed   Mentions: 212     Fields:    Translation:HumansCells
    75. Rational design of intercellular adhesion molecule-1 (ICAM-1) variants for antagonizing integrin lymphocyte function-associated antigen-1-dependent adhesion. J Biol Chem. 2006 Feb 24; 281(8):5042-9. Song G, Lazar GA, Kortemme T, Shimaoka M, Desjarlais JR, Baker D, Springer TA. PMID: 16354667.
      View in: PubMed   Mentions: 21     Fields:    Translation:HumansCells
    76. A "solvated rotamer" approach to modeling water-mediated hydrogen bonds at protein-protein interfaces. Proteins. 2005 Mar 01; 58(4):893-904. Jiang L, Kuhlman B, Kortemme T, Baker D. PMID: 15651050.
      View in: PubMed   Mentions: 55     Fields:    Translation:Cells
    77. Potential functions for hydrogen bonds in protein structure prediction and design. Adv Protein Chem. 2005; 72:1-38. Morozov AV, Kortemme T. PMID: 16581371.
      View in: PubMed   Mentions: 17     Fields:    Translation:Cells
    78. A new hydrogen-bonding potential for the design of protein-RNA interactions predicts specific contacts and discriminates decoys. Nucleic Acids Res. 2004; 32(17):5147-62. Chen Y, Kortemme T, Robertson T, Baker D, Varani G. PMID: 15459285.
      View in: PubMed   Mentions: 32     Fields:    Translation:Cells
    79. Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations. Proc Natl Acad Sci U S A. 2004 May 04; 101(18):6946-51. Morozov AV, Kortemme T, Tsemekhman K, Baker D. PMID: 15118103.
      View in: PubMed   Mentions: 78     Fields:    Translation:Cells
    80. Computational redesign of protein-protein interaction specificity. Nat Struct Mol Biol. 2004 Apr; 11(4):371-9. Kortemme T, Joachimiak LA, Bullock AN, Schuler AD, Stoddard BL, Baker D. PMID: 15034550.
      View in: PubMed   Mentions: 120     Fields:    Translation:Cells
    81. Contributions of amino acid side chains to the kinetics and thermodynamics of the bivalent binding of protein L to Ig kappa light chain. Biochemistry. 2004 Mar 09; 43(9):2445-57. Svensson HG, Wedemeyer WJ, Ekstrom JL, Callender DR, Kortemme T, Kim DE, Sjöbring U, Baker D. PMID: 14992582.
      View in: PubMed   Mentions: 10     Fields:    Translation:HumansCells
    82. Computational alanine scanning of protein-protein interfaces. Sci STKE. 2004 Feb 03; 2004(219):pl2. Kortemme T, Kim DE, Baker D. PMID: 14872095.
      View in: PubMed   Mentions: 188     Fields:    Translation:Cells
    83. Computational design of protein-protein interactions. Curr Opin Chem Biol. 2004 Feb; 8(1):91-7. Kortemme T, Baker D. PMID: 15036162.
      View in: PubMed   Mentions: 78     Fields:    Translation:HumansCells
    84. Evaluation of Models of Electrostatic Interactions in Proteins. J. Phys. Chem. B. 2003; 107:2075-90. Morozov AV, Kortemme T, Baker D.
    85. Convergent mechanisms for recognition of divergent cytokines by the shared signaling receptor gp130. Mol Cell. 2003 Sep; 12(3):577-89. Boulanger MJ, Bankovich AJ, Kortemme T, Baker D, Garcia KC. PMID: 14527405.
      View in: PubMed   Mentions: 49     Fields:    Translation:AnimalsCells
    86. Protein-protein docking predictions for the CAPRI experiment. Proteins. 2003 Jul 01; 52(1):118-22. Gray JJ, Moughon SE, Kortemme T, Schueler-Furman O, Misura KM, Morozov AV, Baker D. PMID: 12784377.
      View in: PubMed   Mentions: 44     Fields:    Translation:Cells
    87. Symmetry recognizing asymmetry: analysis of the interactions between the C-type lectin-like immunoreceptor NKG2D and MHC class I-like ligands. Structure. 2003 Apr; 11(4):411-22. McFarland BJ, Kortemme T, Yu SF, Baker D, Strong RK. PMID: 12679019.
      View in: PubMed   Mentions: 34     Fields:    Translation:HumansAnimalsCells
    88. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J Mol Biol. 2003 Feb 28; 326(4):1239-59. Kortemme T, Morozov AV, Baker D. PMID: 12589766.
      View in: PubMed   Mentions: 189     Fields:    Translation:Cells
    89. A simple physical model for binding energy hot spots in protein-protein complexes. Proc Natl Acad Sci U S A. 2002 Oct 29; 99(22):14116-21. Kortemme T, Baker D. PMID: 12381794.
      View in: PubMed   Mentions: 296     Fields:    Translation:Cells
    90. Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell. 2002 Oct; 10(4):895-905. Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL. PMID: 12419232.
      View in: PubMed   Mentions: 78     Fields:    Translation:Cells
    91. Simple physical models connect theory and experiment in protein folding kinetics. J Mol Biol. 2002 Sep 13; 322(2):463-76. Alm E, Morozov AV, Kortemme T, Baker D. PMID: 12217703.
      View in: PubMed   Mentions: 23     Fields:    Translation:Cells
    92. Similarities between the spectrin SH3 domain denatured state and its folding transition state. J Mol Biol. 2000 Apr 14; 297(5):1217-29. Kortemme T, Kelly MJ, Kay LE, Forman-Kay J, Serrano L. PMID: 10764585.
      View in: PubMed   Mentions: 25     Fields:    Translation:AnimalsCells
    93. The design of linear peptides that fold as monomeric beta-sheet structures. Curr Opin Struct Biol. 1999 Aug; 9(4):487-93. Lacroix E, Kortemme T, Lopez de la Paz M, Serrano L. PMID: 10449370.
      View in: PubMed   Mentions: 19     Fields:    Translation:Cells
    94. Beta-hairpin and beta-sheet formation in designed linear peptides. Bioorg Med Chem. 1999 Jan; 7(1):93-103. Ramírez-Alvarado M, Kortemme T, Blanco FJ, Serrano L. PMID: 10199660.
      View in: PubMed   Mentions: 27     Fields:    Translation:Cells
    95. Design of a 20-amino acid, three-stranded beta-sheet protein. Science. 1998 Jul 10; 281(5374):253-6. Kortemme T, Ramírez-Alvarado M, Serrano L. PMID: 9657719.
      View in: PubMed   Mentions: 64     Fields:    Translation:Cells
    96. Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry. 1998 Jun 23; 37(25):8965-72. Bulaj G, Kortemme T, Goldenberg DP. PMID: 9636038.
      View in: PubMed   Mentions: 70     Fields:    Translation:Cells
    97. Electrostatic interactions in the active site of the N-terminal thioredoxin-like domain of protein disulfide isomerase. Biochemistry. 1996 Nov 19; 35(46):14503-11. Kortemme T, Darby NJ, Creighton TE. PMID: 8931546.
      View in: PubMed   Mentions: 34     Fields:    Translation:Cells
    98. Comparison of the (30-51, 14-38) two-disulphide folding intermediates of the homologous proteins dendrotoxin K and bovine pancreatic trypsin inhibitor by two-dimensional 1H nuclear magnetic resonance. J Mol Biol. 1996 Mar 22; 257(1):188-98. Kortemme T, Hollecker M, Kemmink J, Creighton TE. PMID: 8632454.
      View in: PubMed   Mentions: 1     Fields:    Translation:AnimalsCells
    99. Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. J Mol Biol. 1995 Nov 10; 253(5):799-812. Kortemme T, Creighton TE. PMID: 7473753.
      View in: PubMed   Mentions: 84     Fields:    Translation:Cells
    100. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 1994 May; 3(5):843-52. Chakrabartty A, Kortemme T, Baldwin RL. PMID: 8061613.
      View in: PubMed   Mentions: 141     Fields:    Translation:Cells
    101. Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry. 1993 Jun 01; 32(21):5560-5. Chakrabartty A, Kortemme T, Padmanabhan S, Baldwin RL. PMID: 8504077.
      View in: PubMed   Mentions: 57     Fields:    Translation:Cells
    Tanja's Networks
    Concepts (389)
    Derived automatically from this person's publications.
    Co-Authors (88)
    People in Profiles who have published with this person.
    Similar People (60)
    People who share similar concepts with this person.
    Same Department
    Search Department